在处理UV重叠、CPU的ZFighting检测时会遇到2D空间中的三角形相交问题,

网上普遍是3D空间的相交解法,因此写本文研究下,不过虽然实现了需求,

但用的方法比较暴力。

效果如图:


(鼠标拖动区域处有一小三角形,与外部大三角形进行相交包含演示)

若两三角形存在线段相交,则两三角形相交,但三点都包含的情况下则无法囊括在内。

所以还需额外判断一次三点都包含的情况。

2D空间的三角形相交得从线段与线段相交做起,这里用之前的叉乘方法来检测:

https://www.cnblogs.com/hont/p/6106043.html

点是否在多边形内用的是单双数检测法:

https://www.cnblogs.com/hont/p/6105997.html

方法还是比较朴素的方法,但离线情况下使用无问题。

代码如下(Unity XZ空间):

using System.Collections;
using System.Collections.Generic;
using UnityEngine; public class RayVsTriangle : MonoBehaviour
{
public Transform a0;
public Transform b0;
public Transform c0; public Transform a1;
public Transform b1;
public Transform c1; private bool TriangleVsTriangle(Vector3 a0, Vector3 b0, Vector3 c0, Vector3 a1, Vector3 b1, Vector3 c1)
{
bool IsIntersect(Vector3 a, Vector3 b, Vector3 c, Vector3 d)
{
float crossA = Vector3.Cross(d - c, a - c).y;
float crossB = Vector3.Cross(d - c, b - c).y; if (!(crossA > 0f ^ crossB > 0f)) return false; float crossC = Vector3.Cross(b - a, c - a).y;
float crossD = Vector3.Cross(b - a, d - a).y; if (!(crossC > 0f ^ crossD > 0f)) return false; return true;
} bool IsContain(Vector3 a, Vector3 b, Vector3 c, Vector3 p0)
{
const float kRaycastLen = 100000f; Vector3 comparePoint = (c + b) * 0.5f;
Vector3 originPoint = p0;
comparePoint += (comparePoint - originPoint).normalized * kRaycastLen; int count = 0;
if (IsIntersect(a, b, originPoint, comparePoint)) ++count;
if (IsIntersect(b, c, originPoint, comparePoint)) ++count;
if (IsIntersect(c, a, originPoint, comparePoint)) ++count; return count % 2 == 1;
} if (IsIntersect(a0, b0, a1, b1)) return true;
if (IsIntersect(a0, b0, b1, c1)) return true;
if (IsIntersect(a0, b0, c1, a1)) return true; if (IsIntersect(b0, c0, a1, b1)) return true;
if (IsIntersect(b0, c0, b1, c1)) return true;
if (IsIntersect(b0, c0, c1, a1)) return true; if (IsIntersect(c0, a0, a1, b1)) return true;
if (IsIntersect(c0, a0, b1, c1)) return true;
if (IsIntersect(c0, a0, c1, a1)) return true; if (IsContain(a1, b1, c1, a0) && IsContain(a1, b1, c1, b0) && IsContain(a1, b1, c1, c0))
return true; return false;
} private void OnDrawGizmos()
{
bool isRed = TriangleVsTriangle(a0.position, b0.position, c0.position, a1.position, b1.position, c1.position); Gizmos.color = isRed ? Color.red : Color.white; Gizmos.DrawLine(a0.position, b0.position);
Gizmos.DrawLine(b0.position, c0.position);
Gizmos.DrawLine(c0.position, a0.position); Gizmos.DrawLine(a1.position, b1.position);
Gizmos.DrawLine(b1.position, c1.position);
Gizmos.DrawLine(c1.position, a1.position);
}
}

2D空间中比较两三角形相交与包含的更多相关文章

  1. 2D空间中求两圆的交点

    出处:https://stackoverflow.com/questions/19916880/sphere-sphere-intersection-c-3d-coordinates-of-colli ...

  2. [译]2D空间中使用四叉树Quadtree进行碰撞检测优化

    操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Unity2017.2.0f3 原文出处 : Quick Tip: Use Quadtrees to Detect Lik ...

  3. 2D空间中判断一点是否在三角形内

    要注意如果是XY坐标轴的2D空间,要取差乘分量z而不是y. 实现原理是,将三角形ABC三个边(AB,BC,CA)分别与比较点判断差乘,如果这3个差乘结果表示的方向一致,说明就在三角形内. 效果: 代码 ...

  4. 2D空间中求一点是否在多边形内

    参考自这篇博文:http://www.cnblogs.com/dabiaoge/p/4491540.html 一开始没仔细看做法,浪费了不少时间.下面是最终实现的效果: 大致流程: 1.随便选取多边形 ...

  5. 3D空间中射线与三角形的交叉检測算法

    引言 射线Ray,在3D图形学中有非常多重要的应用.比方,pick操作就是使用射线Ray来实现的,还有诸如子弹射线的碰撞检測等等都能够使用射线Ray来完毕. 所以,在本次博客中,将会简单的像大家介绍下 ...

  6. 3D空间中射线与三角形的交叉检测算法【转】

    引言 射线Ray,在3D图形学中有很多重要的应用.比如,pick操作就是使用射线Ray来实现的,还有诸如子弹射线的碰撞检测等等都可以使用射线Ray来完成.所以,在本次博客中,将会简单的像大家介绍下,如 ...

  7. 2D空间中求线段与圆的交点

    出处: https://answers.unity.com/questions/366802/get-intersection-of-a-line-and-a-circle.html 测试脚本(返回值 ...

  8. [算法]检测空间三角形相交算法(Devillers & Guigue算法)

    #pragma once //GYDevillersTriangle.h /* 快速检测空间三角形相交算法的代码实现(Devillers & Guigue算法) 博客原地址:http://bl ...

  9. 2D和3D空间中计算两点之间的距离

    自己在做游戏的忘记了Unity帮我们提供计算两点之间的距离,在百度搜索了下. 原来有一个公式自己就写了一个方法O(∩_∩)O~,到僵尸到达某一个点之后就向另一个奔跑过去 /// <summary ...

  10. 2D空间的OBB碰撞实现

    OBB全称Oriented bounding box,方向包围盒算法.其表现效果和Unity的BoxCollider并无二致.由于3D空间的OBB需要多考虑一些情况 这里仅关注2D空间下的OBB. 实 ...

随机推荐

  1. #单位根反演,二项式定理#LOJ 6485 LJJ 学二项式定理

    题目 \[\large\sum_{i=0}^nC(n,i)S^ia_{i\bmod 4} \] \(n\leq 10^{18},S,a\leq 10^8\) 分析 前面这一坨看起来就像是二项式定理,考 ...

  2. OpenHarmony加速行业应用落地,多款软件发行版正通过兼容性测评

    4 月 25 日,OpenAtom OpenHarmony(以下简称"OpenHarmony")技术日在深圳举办,大会聚焦 OpenHarmony 3.1 Release 版本核心 ...

  3. 驾驭数据的能力,如同使用ChatGPT一样,是现代职场人的必修课

    现代职场所比拼的除了聪明才智.过往经验之外,很多软性技能也尤为重要. 现在已经不是像网络游戏开局拿着一根小木棍打天下的时代了,这将是一场武装到牙齿的较量,对于各类"装备"的驾驭能力 ...

  4. HarmonyOS卡片刷新服务,信息实时更新一目了然

    如今衣食住行娱乐影音等App占据了大多数人的手机,一部手机可以满足日常大多需求,但对需要经常查看或进行简单操作的场景来说,总需要用户点开App操作未免过于繁琐. 针对该问题, HarmonyOS SD ...

  5. html-testRunner中文乱码

    如下图,使用 html-testRunner 这个库生成测试报告后,出现乱码 因为  HTML文件已经写了  文件编码是  utf-8 所以 我怀疑可能是 html-testRunner 这个库文件中 ...

  6. Pytorch-均方差损失函数和交叉熵损失函数

    均方差损失函数mse_loss()与交叉熵损失函数cross_entropy() 1.均方差损失函数mse_loss() 均方差损失函数是预测数据和原始数据对应点误差的平方和的均值. \[MSE=\f ...

  7. vue3 快速入门系列 —— 组件通信

    vue3 快速入门系列 - 组件通信 组件通信在开发中非常重要,通信就是你给我一点东西,我给你一点东西. 本篇将分析 vue3 中组件间的通信方式. Tip:下文提到的绝大多数通信方式在 vue2 中 ...

  8. 嘉楠k210 多线程 点亮流水灯

    from Maix import GPIO from fpioa_manager import fm import _thread import time fm.register(24, fm.fpi ...

  9. 力扣167(java&python)-两数之和 II - 输入有序数组(中等)

    题目: 给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列  ,请你从数组中找出满足相加之和等于目标数 target 的两个数.如果设这两个数分别是 numbers[in ...

  10. 基于 Serverless 打造如 Windows 体验的个人专属家庭网盘

    ​简介:虽然现在市面上有些网盘产品, 如果免费试用,或多或少都存在一些问题, 可以参考文章<2020 国内还能用的网盘推荐>.本文旨在使用较低成本打造一个 "个人专享的.无任何限 ...