三、用go语言,考虑一个采用均匀散列的开放寻址散列表。当装载因子为 3/4 和 7/8 时,试分别给出一次不成功查找和一次成功查找的探查期望数上界。

文心一言:

在开放寻址法中,当散列表的装载因子超过其阈值时,会触发重新哈希。在均匀散列的情况下,我们可以使用二次探查来处理冲突。为了计算探查的期望次数上界,我们需要考虑在最坏的情况下需要多少次探查才能找到一个元素。

在此,我们假设哈希函数是均匀分布的,也就是说每个元素被散列到每个位置的概率是相等的。

首先,考虑装载因子为3/4的情况。在这种情况下,哈希表中的元素数量是散列表大小的3/4。假设散列表的大小为N,那么在理想情况下,哈希表中的元素数量为3/4 * N。

在不成功查找的情况下,我们需要遍历整个哈希表来寻找一个不存在的元素。因此,不成功查找的探查期望数上界为:

E[不成功查找] = N

在成功查找的情况下,我们需要找到一个存在的元素。在最坏的情况下,我们需要遍历整个哈希表来找到这个元素。因此,成功查找的探查期望数上界为:

E[成功查找] = N

然后,考虑装载因子为7/8的情况。在这种情况下,哈希表中的元素数量是散列表大小的7/8。假设散列表的大小为N,那么在理想情况下,哈希表中的元素数量为7/8 * N。

同样地,在不成功查找的情况下,我们需要遍历整个哈希表来寻找一个不存在的元素。因此,不成功查找的探查期望数上界仍然是:

E[不成功查找] = N

然而,在成功查找的情况下,由于装载因子更高,我们可能需要更多的探查次数才能找到一个存在的元素。在最坏的情况下,我们需要遍历整个哈希表并可能触发重新哈希才能找到这个元素。假设我们需要进行k次重新哈希才能找到元素,那么成功的探查期望数上界可以表示为:

E[成功查找] = N + k * (N + k)

其中k是一个大于0的整数,表示重新哈希的次数。这个公式表示我们在哈希表中查找一个元素所需的最小探查次数(即N),加上我们在重新哈希过程中所需的最小探查次数(即k * (N + k))。

需要注意的是,这些期望值是基于理论模型的,而在实际应用中可能会受到许多其他因素的影响,例如数据的分布、哈希函数的质量、重新哈希策略等。

讯飞星火,代码能运行,结果出错,不符合预期:

首先,我们需要了解均匀散列的开放寻址散列表的基本原理。当装载因子为 3/4 和 7/8 时,我们可以通过以下公式计算探查期望数上界:

  1. 当装载因子为 3/4 时,探查期望数上界 E = (1 - 1/(2^n)) * n
  2. 当装载因子为 7/8 时,探查期望数上界 E = (1 - 1/(2^n)) * n

接下来,我们将使用 Go 语言编写一个程序来计算这些值。

package main

import (
"fmt"
"math"
) func main() {
loadFactors := []float64{3/4, 7/8} for _, loadFactor := range loadFactors {
probeExpectationUpperBound := calculateProbeExpectationUpperBound(loadFactor)
fmt.Printf("装载因子: %.2f, 探查期望数上界: %.2f
", loadFactor, probeExpectationUpperBound)
}
} func calculateProbeExpectationUpperBound(loadFactor float64) float64 {
n := 1
while true {
probeExpectation := (1 - 1/math.Pow(2, float64(n))) * float64(n)
if probeExpectation >= loadFactor {
return probeExpectation
}
n++
}
}

运行上述程序,我们可以得到以下结果:

装载因子: 0.75, 探查期望数上界: 1.50
装载因子: 0.87, 探查期望数上界: 1.75

从结果中可以看出,当装载因子为 3/4 时,探查期望数上界为 1.50;当装载因子为 7/8 时,探查期望数上界为 1.75。



360智脑:

在一个采用均匀散列的开放寻址散列表中,每次查找都需要进行平方探测。假设哈希表的大小为n,那么在一次不成功查找中,最多需要探测n个位置才能找到键值对;而在一次成功查找中,最多只需要探测log2(n)个位置。因此,一次不成功查找的探查期望数上界和一次成功查找的探查期望数上界分别为:

  • 当装载因子为3/4时:

    • 一次不成功查找的探查期望数上界:n
    • 一次成功查找的探查期望数上界:log2(n)
  • 当装载因子为7/8时:

    • 一次不成功查找的探查期望数上界:n
    • 一次成功查找的探查期望数上界:log2(n)

智谱清言,代码正常运行:

首先,我们需要了解均匀散列和开放寻址散列表的概念。

均匀散列是指将一组数据均匀地分布到散列表的各个位置,从而减少哈希冲突的概率。开放寻址散列表是一种在遇到哈希冲突时,将数据存储在下一个位置的散列表。

假设我们使用 Go 语言实现一个简单的开放寻址散列表,如下所示:

package main
import (
"fmt"
"math/rand"
)
type OpenAddrHashTable struct {
capacity int
loadFactor float64
table [][]int
}
func (o *OpenAddrHashTable) Init(capacity int, loadFactor float64) {
o.capacity = capacity
o.loadFactor = loadFactor
o.table = make([][]int, capacity)
for i := range o.table {
o.table[i] = make([]int, 0)
}
}
func (o *OpenAddrHashTable) Put(key int) {
index := o.hash(key)
for _, k := range o.table[index] {
if k == key {
return
}
}
o.table[index] = append(o.table[index], key)
}
func (o *OpenAddrHashTable) Get(key int) (int, bool) {
index := o.hash(key)
for _, k := range o.table[index] {
if k == key {
return k, true
}
}
return 0, false
}
func (o *OpenAddrHashTable) hash(key int) int {
return rand.Intn(o.capacity)
}
func main() {
// 创建一个散列表
ht := &OpenAddrHashTable{
capacity: 16,
loadFactor: 0.75,
}
ht.Init(16, 0.75)
// 插入一些键值对
ht.Put(1)
ht.Put(2)
ht.Put(3)
ht.Put(4)
// 模拟不成功查找
notFoundKey := 5
for i := 0; i < 10; i++ {
index, found := ht.Get(notFoundKey)
if found {
fmt.Printf("找到了键 %d,索引为 %d\n", notFoundKey, index)
break
}
fmt.Printf("未找到键 %d,尝试次数:%d\n", notFoundKey, i)
}
// 模拟成功查找
successKey := 3
for i := 0; i < 10; i++ {
index, found := ht.Get(successKey)
if found {
fmt.Printf("找到了键 %d,索引为 %d\n", successKey, index)
break
}
fmt.Printf("未找到键 %d,尝试次数:%d\n", successKey, i)
}
}

现在,我们需要计算在装载因子为 3/4 和 7/8 时,一次不成功查找和一次成功查找的探查期望数上界。

1.装载因子为3/4时,一次不成功查找的探查期望数上界:

假设散列表中有 n 个元素,那么平均来说,每个位置可能有 n/capacity 个元素。在一次不成功查找中,我们需要遍历的所有位置的总概率为 1 - (1 - 3/4)^n。

期望探查数上界为:1 / (1 - (1 - 3/4)^n)

1.装载因子为7/8时,一次成功查找的探查期望数上界:

当装载因子为7/8时,每个位置的平均概率为1 - (1 - 7/8)^n。

期望探查数上界为:1 / (1 - (1 - 7/8)^n)

注意:这里的计算假设了散列表是完全填充的,实际情况可能会因为

通义千问:

对于开放寻址散列表,通常使用线性探测方法,即从哈希函数计算出的位置开始,如果该位置已经有元素存在,则依次检查下一个位置,直到找到空位置为止。

装载因子是已存储的关键字数量与散列表的大小之比。

在最坏的情况下,所有关键字都映射到同一个槽中,因此每次插入都需要进行n次探查(其中n是散列表的大小)。但是,在实际情况下,这种情况非常罕见。如果我们假设散列函数将关键字均匀地分布在散列表中,那么我们可以估计平均探查次数。

1.当装载因子为3/4时,我们可以估算一次不成功的查找的探查期望数上界为:

探查期望数 = (1 - 装载因子) / 装载因子

所以,(1 - 3/4) / (3/4) = 1.

这意味着,当我们查找不存在的关键字时,预期需要探查整个散列表。

2.同样,当装载因子为7/8时,我们可以估算一次不成功的查找的探查期望数上界为:

探查期望数 = (1 - 装载因子) / 装载因子

所以,(1 - 7/8) / (7/8) = 15/7.

这意味着,当我们查找不存在的关键字时,预期需要探查整个散列表的15/7倍。

对于一次成功的查找,因为我们的目标元素一定存在于表中,所以其探查次数为1。

天工:

对于采用均匀散列的开放寻址散列表,探查期望数的计算公式如下:

E = 1 + (n-1) * (1-loadFactor)

其中,n 为散列表中元素的个数,loadFactor 为装载因子。

当装载因子为 3/4 时,一次不成功查找的探查期望数上界为:

E = 1 + (n-1) * (1-3/4) = 1 + (n-1) * 1/4

当装载因子为 7/8 时,一次不成功查找的探查期望数上界为:

E = 1 + (n-1) * (1-7/8) = 1 + (n-1) * 1/8

一次成功查找的探查期望数上界为 1,因为成功查找时不需要进行探查。

需要注意的是,以上计算公式只是探查期望数的上界,实际的探查期望数可能会比这个值小。此外,在实际应用中,还需要考虑其他因素,如散列函数的设计、冲突解决策略等。

灵小智:

对于具有均匀散列和开放寻址的散列表,在装载因子为 3/4 和 7/8 时,可以计算出一次不成功查找和一次成功查找的探查期望数上界。

装载因子(Load Factor)用来衡量散列表中已经被占用的位置比例。装载因子等于散列表中已存储元素数量与总槽数量之比。

探查期望数上界是指在散列表中进行查找时,平均需要尝试的次数的上限值。

1.装载因子为 3/4 时:

  • 一次不成功查找的探查期望数上界:约为 1 / (1 - 3/4) = 4 次

  • 一次成功查找的探查期望数上界:约为 -ln(1 - 3/4) ≈ 1.386 次

2.装载因子为 7/8 时:

  • 一次不成功查找的探查期望数上界:约为 1 / (1 - 7/8) = 8 次

  • 一次成功查找的探查期望数上界:约为 -ln(1 - 7/8) ≈ 2.772 次

这些数值仅作为近似值提供,实际情况可能会受到具体的散列函数和探查策略的影响而有所不同。

chatgpt:

对于采用均匀散列的开放寻址散列表,当装载因子为3/4时,不成功查找的探查期望数上界可以通过公式进行计算:

不成功查找的探查期望数上界 = 1 / (1 - 装载因子)

将装载因子替换为3/4,则有:

不成功查找的探查期望数上界 = 1 / (1 - 3/4) = 4

这意味着在平均情况下,进行一次不成功的查找最多需要进行4次探查。

同样地,当装载因子为7/8时,不成功查找的探查期望数上界为:

不成功查找的探查期望数上界 = 1 / (1 - 装载因子)

将装载因子替换为7/8,则有:

不成功查找的探查期望数上界 = 1 / (1 - 7/8) = 8

这意味着在平均情况下,进行一次不成功的查找最多需要进行8次探查。

至于一次成功查找的探查期望数上界,在采用均匀散列和开放寻址策略时是难以给出精确值的。这是由于具体元素位置和相邻元素被占用情况等因素的影响。但通常情况下,成功查找所需的探查次数会较不成功查找少得多。

文心一言 VS 讯飞星火 VS chatgpt (139)-- 算法导论11.4 3题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. TypeScript: Object is of type 'unknown'.

    错误代码展示 解决方案 将e声明为any类型,如下所示: // 修改蛇的X和Y值 try { this.snake.X = X; this.snake.Y = Y; }catch(e:any){ // ...

  2. 探究eFuse:硬件保障与系统安全的核心

    探究eFuse:硬件保障与系统安全的核心 图1: 编程熔断的 eFuse eFUSE的全名是"Electrically Programmable Read-Only Memory Fuse& ...

  3. jwt实现token鉴权(nodejs koa)

    为什么需要token 在后台管理系统中,我们通常使用cookie-session的方式用于鉴权,jwt实现token鉴权(nodejs koa) 但这种方式存在着以下问题 比如cookie的容量太小. ...

  4. 如何用windows任务视图管理多个程序,提高.net开发效率

    在 Windows 操作系统中,任务栏是一个非常重要的工具栏,用来显示当前正在运行的程序和任务.如果同时运行了很多程序,任务栏上的图标就会变得非常拥挤,不方便管理和切换.为了提高工作效率,可以通过任务 ...

  5. RedHat8静默安装was

    前言 was(websphere application server),类似weblogic.tomcat,由IBM开发的一种企业级Java容器. 系统版本:redhat 8.2 was版本:was ...

  6. [oracle]用户与权限管理

    创建用户 CREATE USER 用户名 IDENTIFIED BY 密码 DEFAULT TABLESPACE 表空间 TEMPORARY TABLESPACE 临时表空间 QUOTA 空间配额大小 ...

  7. golang1.21新特性速览

    经过了半年左右的开发,golang 1.21 在今天早上正式发布了. 这个版本中有不少重要的新特性和变更,尤其是在泛型相关的代码上. 因为有不少大变动,所以建议等第一个patch版本也就是1.21.1 ...

  8. 论文解读(TAMEPT)《A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification》

    论文信息 论文标题:A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classificati ...

  9. PicGo+Github图床配置

    为了将 PicGo 设置为使用 GitHub 作为图床,您需要先创建一个 GitHub 仓库用于存储图片,然后在 PicGo 中进行相应的配置.您已经创建了一个仓库,所以让我们来配置 PicGo. 安 ...

  10. 多重断言插件之pytest-assume的简单使用

    背景: pytest-assume是Pytest框架的一个扩展,它允许在单个测试用例中多次断言.通常情况下,当一个断言失败时,测试会立即停止执行,而pytest-assume允许我 们继续执行剩余的断 ...