最近在基于SpringBoot做一个面向普通用户的系统,为了保证系统的稳定性,防止被恶意攻击,我想控制用户访问每个接口的频率。为了实现这个功能,可以设计一个annotation,然后借助AOP在调用方法之前检查当前ip的访问频率,如果超过设定频率,直接返回错误信息。

常见的错误设计

在开始介绍具体实现之前,我先列举几种我在网上找到的几种常见错误设计。

1. 固定窗口

有人设计了一个在每分钟内只允许访问1000次的限流方案,如下图01:00s-02:00s之间只允许访问1000次,这种设计最大的问题在于,请求可能在01:59s-02:00s之间被请求1000次,02:00s-02:01s之间被请求了1000次,这种情况下01:59s-02:01s间隔0.02s之间被请求2000次,很显然这种设计是错误的。

2. 缓存时间更新错误

我在研究这个问题的时候,发现网上有一种很常见的方式来进行限流,思路是基于redis,每次有用户的request进来,就会去以用户的ip和request的url为key去判断访问次数是否超标,如果有就返回错误,否则就把redis中的key对应的value加1,并重新设置key的过期时间为用户指定的访问周期。核心代码如下:

// core logic
int limit = accessLimit.limit();
long sec = accessLimit.sec();
String key = IPUtils.getIpAddr(request) + request.getRequestURI();
Integer maxLimit =null;
Object value =redisService.get(key);
if(value!=null && !value.equals("")) {
maxLimit = Integer.valueOf(String.valueOf(value));
}
if (maxLimit == null) {
redisService.set(key, "1", sec);
} else if (maxLimit < limit) {
Integer i = maxLimit+1;
redisService.set(key, i.toString(), sec);
} else {
throw new BusinessException(500,"请求太频繁!");
} // redis related
public boolean set(final String key, Object value, Long expireTime) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.set(key, value);
redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}

这里面很大的问题,就是每次都会更新key的缓存过期时间,这样相当于变相延长了每个计数周期, 可能我们想控制用户一分钟内只能访问5次,但是如果用户在前一分钟只访问了三次,后一分钟访问了三次,在上面的实现里面,很可能在第6次访问的时候返回错误,但这样是有问题的,因为用户确实在两分钟内都没有超过对应的访问频率阈值。

关于key的刷新这块,可以参看redis官方文档,每次refreh都会更新key的过期时间。

基于滑动窗口的正确设计

指定时间T内,只允许发生N次。我们可以将这个指定时间T,看成一个滑动时间窗口(定宽)。我们采用Redis的zset基本数据类型的score来圈出这个滑动时间窗口。在实际操作zset的过程中,我们只需要保留在这个滑动时间窗口以内的数据,其他的数据不处理即可。

比如在上面的例子里面,假设用户的要求是60s内访问频率控制为3次。那么我永远只会统计当前时间往前倒数60s之内的访问次数,随着时间的推移,整个窗口会不断向前移动,窗口外的请求不会计算在内,保证了永远只统计当前60s内的request。

为什么选择Redis zset ?

为了统计固定时间区间内的访问频率,如果是单机程序,可能采用concurrentHashMap就够了,但是如果是分布式的程序,我们需要引入相应的分布式组件来进行计数统计,而Redis zset刚好能够满足我们的需求。

Redis zset(有序集合)中的成员是有序排列的,它和 set 集合的相同之处在于,集合中的每一个成员都是字符串类型,并且不允许重复;而它们最大区别是,有序集合是有序的,set 是无序的,这是因为有序集合中每个成员都会关联一个 double(双精度浮点数)类型的 score (分数值),Redis 正是通过 score 实现了对集合成员的排序。

Redis 使用以下命令创建一个有序集合:

ZADD key score member [score member ...]

这里面有三个重要参数,

  • key:指定一个键名;
  • score:分数值,用来描述  member,它是实现排序的关键;
  • member:要添加的成员(元素)。

当 key 不存在时,将会创建一个新的有序集合,并把分数/成员(score/member)添加到有序集合中;当 key 存在时,但 key 并非 zset 类型,此时就不能完成添加成员的操作,同时会返回一个错误提示。

在我们这个场景里面,key就是用户ip+request uri,score直接用当前时间的毫秒数表示,至于member不重要,可以也采用和score一样的数值即可。

限流过程是怎么样的?

整个流程如下:

  1. 首先用户的请求进来,将用户ip和uri组成key,timestamp为value,放入zset
  2. 更新当前key的缓存过期时间,这一步主要是为了定期清理掉冷数据,和上面我提到的常见错误设计2中的意义不同。
  3. 删除窗口之外的数据记录。
  4. 统计当前窗口中的总记录数。
  5. 如果记录数大于阈值,则直接返回错误,否则正常处理用户请求。

基于SpringBoot和AOP的限流

这一部分主要介绍具体的实现逻辑。

定义注解和处理逻辑

首先是定义一个注解,方便后续对不同接口使用不同的限制频率。

/**
* 接口访问频率注解,默认一分钟只能访问5次
*/
@Documented
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface RequestLimit { // 限制时间 单位:秒(默认值:一分钟)
long period() default 60; // 允许请求的次数(默认值:5次)
long count() default 5; }

在实现逻辑这块,我们定义一个切面函数,拦截用户的request,具体实现流程和上面介绍的限流流程一致,主要涉及到redis zset的操作。


@Aspect
@Component
@Log4j2
public class RequestLimitAspect { @Autowired
RedisTemplate redisTemplate; // 切点
@Pointcut("@annotation(requestLimit)")
public void controllerAspect(RequestLimit requestLimit) {} @Around("controllerAspect(requestLimit)")
public Object doAround(ProceedingJoinPoint joinPoint, RequestLimit requestLimit) throws Throwable {
// get parameter from annotation
long period = requestLimit.period();
long limitCount = requestLimit.count(); // request info
String ip = RequestUtil.getClientIpAddress();
String uri = RequestUtil.getRequestUri();
String key = "req_limit_".concat(uri).concat(ip); ZSetOperations zSetOperations = redisTemplate.opsForZSet(); // add current timestamp
long currentMs = System.currentTimeMillis();
zSetOperations.add(key, currentMs, currentMs); // set the expiration time for the code user
redisTemplate.expire(key, period, TimeUnit.SECONDS); // remove the value that out of current window
zSetOperations.removeRangeByScore(key, 0, currentMs - period * 1000); // check all available count
Long count = zSetOperations.zCard(key); if (count > limitCount) {
log.error("接口拦截:{} 请求超过限制频率【{}次/{}s】,IP为{}", uri, limitCount, period, ip);
throw new AuroraRuntimeException(ResponseCode.TOO_FREQUENT_VISIT);
} // execute the user request
return joinPoint.proceed();
} }

使用注解进行限流控制

这里我定义了一个接口类来做测试,使用上面的annotation来完成限流,每分钟允许用户访问3次。

@Log4j2
@RestController
@RequestMapping("/user")
public class UserController { @GetMapping("/test")
@RequestLimit(count = 3)
public GenericResponse<String> testRequestLimit() {
log.info("current time: " + new Date());
return new GenericResponse<>(ResponseCode.SUCCESS);
} }

我接着在不同机器上,访问该接口,可以看到不同机器的限流是隔离的,并且每台机器在周期之内只能访问三次,超过后,需要等待一定时间才能继续访问,达到了我们预期的效果。

2023-05-21 11:23:15.733  INFO 99636 --- [nio-8080-exec-1] c.v.c.a.api.controller.UserController    : current time: Sun May 21 11:23:15 CST 2023
2023-05-21 11:23:21.848 INFO 99636 --- [nio-8080-exec-3] c.v.c.a.api.controller.UserController : current time: Sun May 21 11:23:21 CST 2023
2023-05-21 11:23:23.044 INFO 99636 --- [nio-8080-exec-4] c.v.c.a.api.controller.UserController : current time: Sun May 21 11:23:23 CST 2023
2023-05-21 11:23:25.920 ERROR 99636 --- [nio-8080-exec-5] c.v.c.a.annotation.RequestLimitAspect : 接口拦截:/user/test 请求超过限制频率【3次/60s】,IP为0:0:0:0:0:0:0:1
2023-05-21 11:23:28.761 ERROR 99636 --- [nio-8080-exec-6] c.v.c.a.annotation.RequestLimitAspect : 接口拦截:/user/test 请求超过限制频率【3次/60s】,IP为0:0:0:0:0:0:0:1
2023-05-21 11:24:12.207 INFO 99636 --- [io-8080-exec-10] c.v.c.a.api.controller.UserController : current time: Sun May 21 11:24:12 CST 2023
2023-05-21 11:24:19.100 INFO 99636 --- [nio-8080-exec-2] c.v.c.a.api.controller.UserController : current time: Sun May 21 11:24:19 CST 2023
2023-05-21 11:24:20.117 INFO 99636 --- [nio-8080-exec-1] c.v.c.a.api.controller.UserController : current time: Sun May 21 11:24:20 CST 2023
2023-05-21 11:24:21.146 ERROR 99636 --- [nio-8080-exec-3] c.v.c.a.annotation.RequestLimitAspect : 接口拦截:/user/test 请求超过限制频率【3次/60s】,IP为192.168.31.114
2023-05-21 11:24:26.779 ERROR 99636 --- [nio-8080-exec-4] c.v.c.a.annotation.RequestLimitAspect : 接口拦截:/user/test 请求超过限制频率【3次/60s】,IP为192.168.31.114
2023-05-21 11:24:29.344 ERROR 99636 --- [nio-8080-exec-5] c.v.c.a.annotation.RequestLimitAspect : 接口拦截:/user/test 请求超过限制频率【3次/60s】,IP为192.168.31.114

欢迎关注公众号【码老思】,只讲最通俗易懂的原创技术干货。

SpringBoot限制接口访问频率 - 这些错误千万不能犯的更多相关文章

  1. Redis 实现接口访问频率限制

    为什么限制访问频率 做服务接口时通常需要用到请求频率限制 Rate limiting,例如限制一个用户1分钟内最多可以范围100次 主要用来保证服务性能和保护数据安全 因为如果不进行限制,服务调用者可 ...

  2. redis 限制接口访问频率

    代码: <?php /** * */ class myRedis { private static $redis = null; /** * @return null|Redis */ publ ...

  3. beego:限制接口访问频率

    package utils import ( "github.com/astaxie/beego" "github.com/astaxie/beego/context&q ...

  4. laravel 5.6 API 接口开发限制接口访问频率

    在laravel 5.6及以上版本中框架中已自带ThrottleRequests,但是为了更好的处理消息,我们可以再新加一个中间件,来更方便的处理相应信息 第一步: php artisan make: ...

  5. springboot打war包后部署到tomcat后访问返回404错误

    springboot打war包后部署到tomcat后访问返回404错误 1.正常情况下,修改打包方式为war <packaging>war</packaging> 2.启动类继 ...

  6. SpringBoot项目接口第一次访问慢的问题

    SpringBoot的接口第一次访问都很慢,通过日志可以发现,dispatcherServlet不是一开始就加载的,有访问才开始加载的,即懒加载. 2019-01-25 15:23:46.264 IN ...

  7. SpringBoot应用中使用AOP记录接口访问日志

    SpringBoot应用中使用AOP记录接口访问日志 本文主要讲述AOP在mall项目中的应用,通过在controller层建一个切面来实现接口访问的统一日志记录. AOP AOP为Aspect Or ...

  8. Django REST framework 自定义(认证、权限、访问频率)组件

    本篇随笔在 "Django REST framework 初识" 基础上扩展 一.认证组件 # models.py class Account(models.Model): &qu ...

  9. WebApi接口访问频率控制的实现

    关于限流的文章,博客园内还是有挺多的.本文做了一个基于Filter限流的例子,算是对WebApiThrottle使用的一个具体的实例. 实现方法: 1.使用Nuget,对WebAPI项目添加WebAp ...

  10. 六、SpringBoot与数据访问

    六.SpringBoot与数据访问 1.JDBC spring: datasource: username: root password: 123456 url: jdbc:mysql://192.1 ...

随机推荐

  1. day01-2-依赖管理和自动配置

    依赖管理和自动配置 1.依赖管理 1.1什么是依赖管理 spring-boot-starter-parent 中还有父项目,声明了开发中常用的依赖的版本号 并且进行自动版本仲裁,即如果程序员没有指定某 ...

  2. Spring--数据库资源管理遗留问题

    遗留问题的解决 在我们要再试一试其他属性的时候,就出现了一些小问题:定义的情况下, 在.xml文件里面调用: 却发现输出是这样的: 这完全不对等啊! 之后发现是系统的值,优先级要高于我们自己配置的这个 ...

  3. Innodb的Buffer Pool

    什么是Buffer Pool 为了缓存磁盘中的页,MySQL服务器启动的时候就向操作系统申请了一片连续的内存,他们给这片内存起了个名,叫做Buffer Pool(中文名是缓冲池).innodb_buf ...

  4. MasaFramework入门第二篇,安装MasaFramework了解各个模板

    安装MasaFramework模板 执行以下命令安装最新Masa的模板 dotnet new --install Masa.Template 安装完成将出现四个模板 Masa Blazor App: ...

  5. 剑指 offer 第 4 天

    第 4 天 查找算法(简单) 剑指 Offer 03. 数组中重复的数字 找出数组中重复的数字. 在一个长度为 n 的数组 nums 里的所有数字都在 0-n-1 的范围内.数组中某些数字是重复的,但 ...

  6. 器学习算法(六)基于天气数据集的XGBoost分类预测

    1.机器学习算法(六)基于天气数据集的XGBoost分类预测 1.1 XGBoost的介绍与应用 XGBoost是2016年由华盛顿大学陈天奇老师带领开发的一个可扩展机器学习系统.严格意义上讲XGBo ...

  7. SpringBoot 项目使用 Sa-Token 完成登录认证

    一.设计思路 对于一些登录之后才能访问的接口(例如:查询我的账号资料),我们通常的做法是增加一层接口校验: 如果校验通过,则:正常返回数据. 如果校验未通过,则:抛出异常,告知其需要先进行登录. 那么 ...

  8. 移动端网页--better-scroll介绍

    移动端网页--better-scroll介绍 Options 起始位置及滚动方向 startX:0 开始时的X轴位置 startY:0 开始时的Y轴位置 scrollY: true 滚动方向为 Y 轴 ...

  9. GitLab 安装部署使用

    GitLab介绍 GitLab:是一个基于Git实现的在线代码仓库托管软件,你可以用gitlab自己搭建一个类似于Github一样的系统,一般用于在企业.学校等内部网络搭建git私服. 功能:Gitl ...

  10. 有关idea的使用部分

    出现相关异常,提示类似粗在idea找不到相关的包加载失败. 执行mvn命令 mvn -U idea:idea 含义更新重新加载idea工程的相关jar