摘要:现在商用优化器大多都是基于统计信息进行查询代价评估,因此统计信息是否实时且准确对查询影响很大,特别是分布式数据库场景。本文详细介绍GaussDB(DWS)如何实现了一种轻量、实时、准确的统计信息自动收集方案。

本文分享自华为云社区《【最佳实践】GaussDB(DWS) 统计信息自动收集方案》,作者: leapdb。

一、统计信息收集痛点

  1. 何时做analyze,多做空耗系统资源,少做统计信息不及时。
  2. 多个数据源并发加工一张表,手动analyze不能并发。
  3. 数据修改后立即查询,统计信息实时性要求高。
  4. 需要关心每张表的数据变化和治理,消耗大量人力。

二、基本功能介绍

三、自动收集方案

GaussDB(DWS) 支持统计信息自动收集功能,主要解决统计信息收集不及时和不准确的问题。

手动采样:用户在作业中,手动发起的显示analyze。

轮询采样:autovacuum后台线程,轮询发起的analyze。

动态采样:查询时,优化器触发的runtime analyze。

前台动态采样:负责统计信息实时准确,信息放内存(有淘汰机制),一级锁(像查询一样轻量)。

autoanalyze=on;
autoanalyze_mode='light';

后台轮询采样:负责统计信息的持久化,写系统表(四级锁),不要求特别及时。

autovacuum_mode=mix或analyze;
--- 以前只有“后台轮询采样”,都由后台autovacuum线程控制做vacuum或analyze。
--- 后来开发“前台动态采样”,叫autoanalyze。
--- 请注意二者的区别。

二者都需要开启。

替代场景

统计信息基于收集时表数据生成,数据变化较多后可能失效。自动触发也是基于阈值(50+表大小*10%)。

总结:

  1. 小表变化<10%且数据特征变化明显,需要“调低阈值自动收集”。
  2. 调整过采样大小且实时性要求高的场景,需要“主动收集统计信息”。
  3. 外表和冷热表因访问性能问题,不支持自动,需要“主动收集统计信息”。

四、如何保证及时触发

【触发条件】“无统计信息” or “表的修改量超过一定阈值(默认“50 + 表大小 * 10%”)”

【触发场景】含stream计划的SQL都可触发动态采样,包括select和带条件的delete, update。

【修改计数】

1. 哪些修改行为会被记录?

DML: Insert, Update, Delete, Copy, Merge,会累加修改计数。

DDL: truncate table,truncate/exchange/drop partition, alter column type, alter distribute,由于CN无法获取DN修改计数,所以直接记录一个超大修改计数。

2. 跨CN查询场景,如何确保修改计数全局一致?

异步广播:autovacuum后台线程轮询检查时,向所有CN广播全局修改计数。修改计数达2/3时广播一次,此后每增10%再广播一次。

实时广播:单SQL修改超过tuple_change_sync_threshold(默认1W)条时,直接实时广播修改计数到其它CN。

总结:“修改计数记录”和“修改计数广播”,覆盖都比较全面,能够保证查询及时触发动态采样。

五、最佳实践

GaussDB(DWS) analyze使用指南8.1.3及以下版本

GaussDB(DWS) analyze使用指南8.2.0及以上版本

1.事务块中手动analyze堵塞其它业务

【业务场景】

BEGIN;
ANALYZE t_ucuser;
INSERT INTO t_user_name(project_id, account_id, name_id, uid, etl_time)
with t1 AS (
select project_id, account_id, name_id
from t_user_name
WHERE uid is null or uid = ''
)
select a.project_id,a.account_id,a.name_id, b.user_name AS uid, CURRENT_TIMESTAMP AS etl_time
from t1 a join t_ucuser b ON a.project_id = b.project_id AND a.account_id = b.account_id
ON CONFLICT(project_id,account_id,name_id) DO UPDATE
SET project_id=excluded.project_id, account_id=excluded.account_id, name_id=excluded.name_id, uid=excluded.uid, etl_time=excluded.etl_time;
END;

【问题根因】

a. 某数据湖用户,多个数据源按照不同的分区进行数据导入加工。

b. 事务块中有手动analyze,且事务块中后面的查询长时间执行不完。

c. 因analyze对表加四级锁长时间不能释放,导致其它相关表上的业务等锁超时报错。

【解决方案】开启light动态采样,去掉事务块中的手动analyze。

2. 多数据源并发加工同一张表的不同分区

【业务场景】

为了保证用户查询表总有数据,需要把加工过程放到一个事务里面。堵塞其它人的动态采样。

begin;
alter table tab_partition truncate partition P2023_03;
insert into tab_partition select * from t1;
end;

【问题根因】alter table truncate parition对分区加8级锁,事务过程中长时间持锁。

【解决方案】使用exchange partition

CREATE TABLE IF NOT EXISTS tab_tmp1(like tab_partition INCLUDING DROPCOLUMNS INCLUDING DISTRIBUTION INCLUDING STORAGE INCLUDING RELOPTIONS);
INSERT INTO tab_tmp1 SELECT * FROM t1;
ALTER TABLE tab_partition exchange partition (P2023_03) WITH TABLE tab_tmp1;

3.多表并发反序analyze导致统计信息收集失败

【业务场景】

a. 某银行客户,多个表进行批处理数据加工,开启了normal类型动态采样。

b. 查询A先对t1表触发动态采样,再对t2表触发动态采样。

c. 查询B先对t2表触发动态采样,再对t1表触发动态采样。

d. 触发动态采样的顺序不一致,互相申请四级锁导致申锁超时,统计信息未收集。

【问题根因】多人同时按不同顺序analyze多表导致死锁。

【解决方案】开启light动态采样,仅加一级锁不再有四级锁冲突。

4.刚导入的数据不在统计信息中导致查询计划差

【业务场景】

a. 某财经用户,按照月度视为会计期,月初时导入少量数据,然后马上查询。

b. 触发了动态采样,但采集不到最新会计期的少量数据。

【问题根因】新插入数据占比小,及时触发了动态采样但采集不到,导致估算偏差大。

【解决方案】

a. 开启统计信息推算enable_extrapolation_stats功能,根据上一个会计期的统计信息推算当前会计期数据特征。

b. 不提高采样大小,利用历史信息增强统计信息准确性。

5.随机函数质量差导致数据特征统计不准

【业务场景】

a. 某银行客户,按月度条件进行关联查询

b. 多次analyze,最多数据月份在MCV中占比从13%~30%大幅波动

c. 详细输出样本点位置和采样随机数发现,随机数(小数点后6位)生成重复度高导致采样扎堆儿严重。

【问题根因】采样随机数不够随机,样本采集不均匀导致MCV数据特征统计偏差。

【解决方案】

a. 每次传入随机种子再生成随机数,提高随机性和并发能力。控制参数random_function_version。

b. 不提高采样大小,提升随机数质量增强统计信息准确性。

6.样本分布不均匀导致数据特征统计不准

【业务场景】

a. tpc-h的lineitem表l_orderkey列,数据每4~8条批量重复。即同一个订单购买多个商品。

b. 传统采样算法由于采样不均匀,采集到的重复数据稍多,导致采集的distinct值偏低。

【问题根因】数据特征分布不均匀,采样无法抓准数据特征,distinct值高的场景统计出的distinct值偏低。

【解决方案】

a. 使用自研的优化蓄水池采样算法,控制参数analyze_sample_mode=2,让采样更加均匀,以提升统计信息准确性。

b. 如果上述方法没有达到预期效果,可以手动修改distinct值。

select APPROX_COUNT_DISTINCT(l_orderkey) from lineitem; --近似计算distinct值
alter table lineitem alter l_orderkey set (n_distinct=10000); --手动设置distinct值,然后再analyze即可。

点击关注,第一时间了解华为云新鲜技术~

最佳实践:解读GaussDB(DWS) 统计信息自动收集方案的更多相关文章

  1. Oracle 11G统计信息自动收集及调整

    查询统计信息的收集所对应的task,以及当前状态 col CLIENT_NAME for a50col TASK_NAME for a20SELECT client_name, task_name, ...

  2. Android最佳实践之SystemBar状态栏全版本适配方案

    前言 自从MD设计规范出来后,关于系统状态栏的适配越受到关注,因为MD在5.0以后把系统状态栏的颜色改为可由开发者配置的,而在5.0之前则无法指定状态栏的颜色,所以这篇就说说使用Toolbar对系统状 ...

  3. 关于Oracle开启自动收集统计信息的SPA测试

    主题:关于Oracle开启自动收集统计信息的SPA测试 环境:Oracle RAC 11.2.0.4(Primary + Standby) 需求:生产Primary库由于历史原因关闭了自动统计信息的收 ...

  4. 详解GaussDB(DWS) explain分布式执行计划

    摘要:本文主要介绍如何详细解读GaussDB(DWS)产生的分布式执行计划,从计划中发现性能调优点. 前言 执行计划(又称解释计划)是数据库执行SQL语句的具体步骤,例如通过索引还是全表扫描访问表中的 ...

  5. 有关Oracle统计信息的知识点[z]

    https://www.cnblogs.com/sunmengbbm/p/5775211.html 一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如, ...

  6. 有关Oracle统计信息的知识点

    一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于 ...

  7. Oracle中的统计信息

    一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于 ...

  8. oracle10g 统计信息查看、收集

      1. 统计信息查看 1.1 单个表的全局统计信息.统计效果查看 2. 统计信息分析(收集) 2.1 分析工具选择 2.2 分析前做index重建 2.3 分析某数据表,可以在PL/SQL的comm ...

  9. Markdown最佳实践

    Markdown 最佳实践 结合目前看到的信息,总结使用Markdown的最方便的方式. 我的需求是: 能够配合各种笔记软件使用,目前主要使用的是为知笔记和有道笔记.笔记的内容需要记录代码及数学公式, ...

  10. oracle的统计信息的查看与收集

    查看某个表的统计信息 SQL> alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'; Session altered. SQL&g ...

随机推荐

  1. 移植 uCos-III 3.03 到 STM32F429 上

    背景 通过STM32 的学习,我们可以往更深层次的地方走,尝试系统上的一些开发. STM32: F429(StdPeriph) uCos-III : v3.04 + 3.03 有关说明: 在移植 3. ...

  2. 化合物同位素理论同位素分布计算软件Isopro 3.0

    大家好,今天分享一款软件,即可以计算化合物理论同位素分布的软件Isopro 3.0.在做质谱的实验时,特别对合成的化合物进行质量表征时,往往要求ppm绝对值在5以内,对质谱的分辨率要求很高.对于小分子 ...

  3. post基础错误注入

    Burpsuite抓取HTTP请求 Burpsuite是一款Web安全测试的利器,集成了几乎Web安全测试中所有需要用到的功能. 运行前提: 需要安装Java https://www.java.com ...

  4. 算法金 | Transformer,一个神奇的算法模型!!

    大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在现代自然语言处理(NLP)领域,Transformer 模型的出现带 ...

  5. 传统RNN网络及其案例--人名分类

    传统RNN网络及其案例--人名分类 传统的RNN模型简介 RNN 先上图 这图看起来莫名其妙,想拿着跟CNN对比着学第一眼看上去有点摸不着头脑,其实我们可以把每一个时刻的图展开来,如下 其中,为了简化 ...

  6. Unicode 和JS中的字符串

    计算机内部使用二进制存储数据,只认识0和1两个数字,计算机的世界只有0和1.但我们的世界却充满着文字,如a, b, c.怎样才能让计算机显示文字,供我们使用和交流?只能先把文字转化成数字进行存储,然后 ...

  7. c# 对DataTable数据筛选后进行修改操作

    记录一次对DataTable中的数据筛选去重后,然后对数据进行修改! foreach (DataRow dr in dt.Rows) // 便利dt { if (StringUtil.isNotNul ...

  8. SpringBoot中使用Servlet3.0注解开发自定义的拦截器

    使用Servlet3.0的注解进行配置步骤 启动类里面加@ServletComponentScan,进行扫描 新建一个Filter类,implements Filter,并实现对应的接口 @WebFi ...

  9. 解决方案 | cvxpy成功安装过程及其使用攻略

    背景:  由于需要研究KKT条件下的最优化问题,需要安装一个python的包cvxpy. 过程: 1.正常pip install cvxpy 不可取(不会成功,中间有报错): 2.主要错误在于:其依赖 ...

  10. 解决方案 | Get-AppxPackage : 无法启动服务,原因可能是已被禁用或与其相关联的设备没有启动

    前几天由于需要卸载一些win10自带应用,导致onenote2016无法启动(根本原因:当时可能remove-appxpackage导致某些微软原生应用出现问题),同时今天使用power shell出 ...