最佳实践:解读GaussDB(DWS) 统计信息自动收集方案
摘要:现在商用优化器大多都是基于统计信息进行查询代价评估,因此统计信息是否实时且准确对查询影响很大,特别是分布式数据库场景。本文详细介绍GaussDB(DWS)如何实现了一种轻量、实时、准确的统计信息自动收集方案。
本文分享自华为云社区《【最佳实践】GaussDB(DWS) 统计信息自动收集方案》,作者: leapdb。
一、统计信息收集痛点
- 何时做analyze,多做空耗系统资源,少做统计信息不及时。
- 多个数据源并发加工一张表,手动analyze不能并发。
- 数据修改后立即查询,统计信息实时性要求高。
- 需要关心每张表的数据变化和治理,消耗大量人力。
二、基本功能介绍
三、自动收集方案
GaussDB(DWS) 支持统计信息自动收集功能,主要解决统计信息收集不及时和不准确的问题。
手动采样:用户在作业中,手动发起的显示analyze。
轮询采样:autovacuum后台线程,轮询发起的analyze。
动态采样:查询时,优化器触发的runtime analyze。
前台动态采样:负责统计信息实时准确,信息放内存(有淘汰机制),一级锁(像查询一样轻量)。
autoanalyze=on;
autoanalyze_mode='light';
后台轮询采样:负责统计信息的持久化,写系统表(四级锁),不要求特别及时。
autovacuum_mode=mix或analyze;
--- 以前只有“后台轮询采样”,都由后台autovacuum线程控制做vacuum或analyze。
--- 后来开发“前台动态采样”,叫autoanalyze。
--- 请注意二者的区别。
二者都需要开启。
替代场景
统计信息基于收集时表数据生成,数据变化较多后可能失效。自动触发也是基于阈值(50+表大小*10%)。
总结:
- 小表变化<10%且数据特征变化明显,需要“调低阈值自动收集”。
- 调整过采样大小且实时性要求高的场景,需要“主动收集统计信息”。
- 外表和冷热表因访问性能问题,不支持自动,需要“主动收集统计信息”。
四、如何保证及时触发
【触发条件】“无统计信息” or “表的修改量超过一定阈值(默认“50 + 表大小 * 10%”)”
【触发场景】含stream计划的SQL都可触发动态采样,包括select和带条件的delete, update。
【修改计数】
1. 哪些修改行为会被记录?
DML: Insert, Update, Delete, Copy, Merge,会累加修改计数。
DDL: truncate table,truncate/exchange/drop partition, alter column type, alter distribute,由于CN无法获取DN修改计数,所以直接记录一个超大修改计数。
2. 跨CN查询场景,如何确保修改计数全局一致?
异步广播:autovacuum后台线程轮询检查时,向所有CN广播全局修改计数。修改计数达2/3时广播一次,此后每增10%再广播一次。
实时广播:单SQL修改超过tuple_change_sync_threshold(默认1W)条时,直接实时广播修改计数到其它CN。
总结:“修改计数记录”和“修改计数广播”,覆盖都比较全面,能够保证查询及时触发动态采样。
五、最佳实践
GaussDB(DWS) analyze使用指南8.1.3及以下版本
GaussDB(DWS) analyze使用指南8.2.0及以上版本
1.事务块中手动analyze堵塞其它业务
【业务场景】
BEGIN;
ANALYZE t_ucuser;
INSERT INTO t_user_name(project_id, account_id, name_id, uid, etl_time)
with t1 AS (
select project_id, account_id, name_id
from t_user_name
WHERE uid is null or uid = ''
)
select a.project_id,a.account_id,a.name_id, b.user_name AS uid, CURRENT_TIMESTAMP AS etl_time
from t1 a join t_ucuser b ON a.project_id = b.project_id AND a.account_id = b.account_id
ON CONFLICT(project_id,account_id,name_id) DO UPDATE
SET project_id=excluded.project_id, account_id=excluded.account_id, name_id=excluded.name_id, uid=excluded.uid, etl_time=excluded.etl_time;
END;
【问题根因】
a. 某数据湖用户,多个数据源按照不同的分区进行数据导入加工。
b. 事务块中有手动analyze,且事务块中后面的查询长时间执行不完。
c. 因analyze对表加四级锁长时间不能释放,导致其它相关表上的业务等锁超时报错。
【解决方案】开启light动态采样,去掉事务块中的手动analyze。
2. 多数据源并发加工同一张表的不同分区
【业务场景】
为了保证用户查询表总有数据,需要把加工过程放到一个事务里面。堵塞其它人的动态采样。
begin;
alter table tab_partition truncate partition P2023_03;
insert into tab_partition select * from t1;
end;
【问题根因】alter table truncate parition对分区加8级锁,事务过程中长时间持锁。
【解决方案】使用exchange partition
CREATE TABLE IF NOT EXISTS tab_tmp1(like tab_partition INCLUDING DROPCOLUMNS INCLUDING DISTRIBUTION INCLUDING STORAGE INCLUDING RELOPTIONS);
INSERT INTO tab_tmp1 SELECT * FROM t1;
ALTER TABLE tab_partition exchange partition (P2023_03) WITH TABLE tab_tmp1;
3.多表并发反序analyze导致统计信息收集失败
【业务场景】
a. 某银行客户,多个表进行批处理数据加工,开启了normal类型动态采样。
b. 查询A先对t1表触发动态采样,再对t2表触发动态采样。
c. 查询B先对t2表触发动态采样,再对t1表触发动态采样。
d. 触发动态采样的顺序不一致,互相申请四级锁导致申锁超时,统计信息未收集。
【问题根因】多人同时按不同顺序analyze多表导致死锁。
【解决方案】开启light动态采样,仅加一级锁不再有四级锁冲突。
4.刚导入的数据不在统计信息中导致查询计划差
【业务场景】
a. 某财经用户,按照月度视为会计期,月初时导入少量数据,然后马上查询。
b. 触发了动态采样,但采集不到最新会计期的少量数据。
【问题根因】新插入数据占比小,及时触发了动态采样但采集不到,导致估算偏差大。
【解决方案】
a. 开启统计信息推算enable_extrapolation_stats功能,根据上一个会计期的统计信息推算当前会计期数据特征。
b. 不提高采样大小,利用历史信息增强统计信息准确性。
5.随机函数质量差导致数据特征统计不准
【业务场景】
a. 某银行客户,按月度条件进行关联查询
b. 多次analyze,最多数据月份在MCV中占比从13%~30%大幅波动
c. 详细输出样本点位置和采样随机数发现,随机数(小数点后6位)生成重复度高导致采样扎堆儿严重。
【问题根因】采样随机数不够随机,样本采集不均匀导致MCV数据特征统计偏差。
【解决方案】
a. 每次传入随机种子再生成随机数,提高随机性和并发能力。控制参数random_function_version。
b. 不提高采样大小,提升随机数质量增强统计信息准确性。
6.样本分布不均匀导致数据特征统计不准
【业务场景】
a. tpc-h的lineitem表l_orderkey列,数据每4~8条批量重复。即同一个订单购买多个商品。
b. 传统采样算法由于采样不均匀,采集到的重复数据稍多,导致采集的distinct值偏低。
【问题根因】数据特征分布不均匀,采样无法抓准数据特征,distinct值高的场景统计出的distinct值偏低。
【解决方案】
a. 使用自研的优化蓄水池采样算法,控制参数analyze_sample_mode=2,让采样更加均匀,以提升统计信息准确性。
b. 如果上述方法没有达到预期效果,可以手动修改distinct值。
select APPROX_COUNT_DISTINCT(l_orderkey) from lineitem; --近似计算distinct值
alter table lineitem alter l_orderkey set (n_distinct=10000); --手动设置distinct值,然后再analyze即可。
最佳实践:解读GaussDB(DWS) 统计信息自动收集方案的更多相关文章
- Oracle 11G统计信息自动收集及调整
查询统计信息的收集所对应的task,以及当前状态 col CLIENT_NAME for a50col TASK_NAME for a20SELECT client_name, task_name, ...
- Android最佳实践之SystemBar状态栏全版本适配方案
前言 自从MD设计规范出来后,关于系统状态栏的适配越受到关注,因为MD在5.0以后把系统状态栏的颜色改为可由开发者配置的,而在5.0之前则无法指定状态栏的颜色,所以这篇就说说使用Toolbar对系统状 ...
- 关于Oracle开启自动收集统计信息的SPA测试
主题:关于Oracle开启自动收集统计信息的SPA测试 环境:Oracle RAC 11.2.0.4(Primary + Standby) 需求:生产Primary库由于历史原因关闭了自动统计信息的收 ...
- 详解GaussDB(DWS) explain分布式执行计划
摘要:本文主要介绍如何详细解读GaussDB(DWS)产生的分布式执行计划,从计划中发现性能调优点. 前言 执行计划(又称解释计划)是数据库执行SQL语句的具体步骤,例如通过索引还是全表扫描访问表中的 ...
- 有关Oracle统计信息的知识点[z]
https://www.cnblogs.com/sunmengbbm/p/5775211.html 一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如, ...
- 有关Oracle统计信息的知识点
一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于 ...
- Oracle中的统计信息
一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于 ...
- oracle10g 统计信息查看、收集
1. 统计信息查看 1.1 单个表的全局统计信息.统计效果查看 2. 统计信息分析(收集) 2.1 分析工具选择 2.2 分析前做index重建 2.3 分析某数据表,可以在PL/SQL的comm ...
- Markdown最佳实践
Markdown 最佳实践 结合目前看到的信息,总结使用Markdown的最方便的方式. 我的需求是: 能够配合各种笔记软件使用,目前主要使用的是为知笔记和有道笔记.笔记的内容需要记录代码及数学公式, ...
- oracle的统计信息的查看与收集
查看某个表的统计信息 SQL> alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'; Session altered. SQL&g ...
随机推荐
- nordic—RTC+PPI定时驱动某外设做非单次触发(本次测试为驱动GPIO口做电平翻转)
简介:在nordic的开发中使用到RTC时,对于比较通道0/1/2/3的中断来说,如果不进行相关配置(如SDK中例子,使用的RTC比较通道就只能触发一次,不能多次触发),会导致比较中断只进入一次,如果 ...
- maven项目创建默认目录结构
maven项目创建默认目录结构命令 项目文件夹未创建情况下 mvn \ archetype:generate \ -DgroupId=com.lits.parent \ -DartifactId=my ...
- pytest执行_allure报“AttributeError: module 'allure' has no attribute 'severity_level'”
背景: 一个大项目A,需要项目B作为源码,即pycharm的 source_root 问题: 项目B,执行pytest.main([pytest命令]),控制台报错"AttributeErr ...
- yolov1-yolov5 网络结构&正负样本筛选&损失计算
学习yolo系列,最重要的,最核心的就是网络模型.正负样本匹配.损失函数等三个方面.本篇汇总了yolov1-yolov5等5个版本的相关知识点,主要看点是在yolo框架搭建.初学者可以通过相关篇章搭建 ...
- Windows下USB声卡音量调整
买了一个绿联的USB声卡, 但是默认的音量太大了,最低音量都响的不行. 查了一下, 发现了一个叫EqualizerAPO的软件可以调整输出设备的音量. https://equalizerapo.com ...
- QT学习:10 IO类
--- title: framework-cpp-qt-10-IO类 EntryName: framework-cpp-qt-10-QIODevice date: 2020-04-17 10:24:0 ...
- 题解:洛谷 P1137 旅行计划
标签:图论,拓扑,dp 题意 给定一张 \(n\) 个点 \(m\) 条边的 DAG,对于每个 \(i\),求以它为终点最多经过多少个点? 思路 由于是 DAG,求的是终点 \(i\) 经过的所有点, ...
- Java反射机制原理详解
什么是反射? Java反射机制的核心是在程序运行时动态加载类并获取类的详细信息,从而操作类或对象的属性和方法.本质是JVM得到class对象之后,再通过class对象进行反编译,从而获取对象的各种信息 ...
- Java权限认证框架比较
认证.授权.鉴权和权限控制 定义 英文 实现方式 认证 确认声明者的身份 identification 根据声明者独特的识别信息 授权 获取用户的委派权限 authorization 颁发一个授信媒介 ...
- Mybatis-Plus最优化持久层开发
Mybatis-plus:最优化持久层开发 一:Mybatis-plus快速入门: 1.1:简介: Mybatis-plus(简称MP)是一个Mybatis的增强工具,在mybatis的基础上只做增强 ...