Kafka与RabbitMQ
一、什么是kafka,什么是rabbit
Kafka是由Scala语言开发的一种分布式流处理框架,主要用于处理活跃的流式数据,以及大数据量的数据处理。它采用发布-订阅模型,支持消息的批量处理,数据的存储和获取是本地磁盘顺序批量操作,这使得消息处理的效率较高,吞吐量较大。
RabbitMQ则是由Erlang语言开发,主要用于实时的、对可靠性要求较高的消息传递。它采用AMQP(高级消息队列协议)进行消息的传递,并且有一个broker(消息代理)作为中心,可以确认消息的传递。RabbitMQ支持消息的可靠的传递,支持事务,但并不支持批量操作,基于存储的可靠性的要求存储可以采用内存或硬盘,但吞吐量相对较小。
二、rabbit和kafka的特性
(1)Kafka的特性:
- 大规模数据处理:Kafka的吞吐量巨大,其数据存储和获取是本地磁盘的批量处理,可以达到百万/s。
- 持久性消息存储:Kafka是一个持久性消息存储,在数据写入后即使出现系统崩溃,也能够保证数据的完整性。
- 可靠性的支持:Kafka的broker支持主备模式,为数据的安全性提供了保障。
(2)RabbitMQ的特性:
- 消息确认机制:RabbitMQ具有生产者confirm机制以及消费者的消息应答机制ack,可以保证消息的可靠传递。
- 消息顺序性:在RabbitMQ中,在一个队列里的消息是严格顺序的,按照先进先出。
- 持久化支持:RabbitMQ支持持久化,可以把消息写入到磁盘中,保证数据在内存不足时也不会丢失。
- 高可用性:RabbitMQ使用了MirrorQueue的机制,可以将重要队列“复制”到集群中的其他broker上,保证这些队列的消息不会丢失。
(3)二者的相同点在于都是为了解决消息的传递问题,但在很多方面也有显著的不同:
- 架构模型:RabbitMQ遵循AMQP协议,由Exchange、Binding、queue组成,其中exchange和binding组成了消息的路由键;客户端Producer通过连接channel和server进行通信,Consumer从queue获取消息进行消费。而Kafka遵从一般的MQ结构,以producer、broker、consumer为中心。
- 消息确认机制:Kafka并不具有应答机制,而RabbitMQ具有生产者confirm机制以及消费者的消息应答机制ack。
- 消息的顺序:在RabbitMQ中,在一个队列里面,rabbitmq的消息是严格顺序的,按照先进先出。然而在Kafka中,虽然每个partition中的消息是有序的,但是因为Kafka将数据分布在不同的partition中,所以总体是无序的。
- 吞吐量:在不使用ACK机制的情况下,RabbitMQ的QPS可以达到6W+,而在双方使用ACK机制的情况下,QPS降到了1W+。与此相反的是,Kafka具有巨大的吞吐量,数据的存储以及获取是本地磁盘的批量处理,可以达到百万/s。
- 可靠性: RabbitMQ使用了MirrorQueue的机制,也可以做到多个机器进行热备。而Kafka的主备模式提供了另外一种可靠性保障。
总的来说,RabbitMQ和Kafka在特性和应用场景上各有优势和劣势。在选择使用时需要考虑到自身需求以及两者的特性和限制。
三、两者使用场景,如何才能方便应用
我们首先要明白kafka不是消息中间件的一种实现,他是分布式流系统,他的定位就是来处理日志及大数据方面,吞吐量无疑是很高的。而rabbit他的push模式就导致了他得延时是较低的,但是场景上只支持主从,所以在本身的设计上就是比较小的,cpu消耗自然就更低。
从消息顺序来讲:
Kafka可以保证在单个分区中的消息顺序是有序的,即按照消息的写入顺序进行消费。但是,当使用多个分区时,就不能保证消息的顺序了,因为每个分区都是独立的,消息的写入顺序和消费顺序都是分区内部的顺序,与其他分区无关,如果需要保证消息的顺序,可以将所有的消息写入到单个分区中,或者使用单个消费者或消费者组来消费消息。
而对于RabbitMQ,如果是单个消费者,那么它先进先出的机制,可以保证消息的有序性,但是如果有多个消费者从同一个队列中读取消息,那么就难以保证消息的顺序。例如,一个消费者在处理消息后可能由于失败等原因将消息放回队列,这样另一个消费者就可以继续处理它,从而可能导致消息的顺序错乱。这种情况下,可以通过限制消费者并发数=1的方式来保证消息的有序性。
(1)Kafka的使用场景和例子:
- 大规模数据流处理:Kafka可以处理大规模的数据流,并且具有高吞吐量和持久性特性,可以承受大量的数据。例如,一个大型的网络应用需要收集来自数百台服务器的日志数据,并将这些数据传递给分布式数据处理系统(如 Apache Spark)进行实时数据分析和仪表板展示。 Kafka可以作为数据枢纽,服务器将日志消息发布到Kafka Topic中,而 Spark 则通过消费者从 Kafka 中订阅和处理这些消息。
- 实时数据流处理:Kafka可以支持实时的数据流处理,并且具有低延迟的特性。例如,电商平台需要实时处理订单和库存消息,当有新订单生成时,需要通知库存管理系统进行库存调整。 Kafka可以用于传递这些实时的订单和库存消息,并支持低延迟的处理。
(2)RabbitMQ的使用场景和例子:
- 消息路由:RabbitMQ可以通过消息路由的方式将消息发送到不同的消费者或者消费者组中。例如,一个电子商务平台需要处理订单和库存管理,当有新订单生成时,需要通知库存管理系统进行库存调整。 RabbitMQ可以将订单消息路由到库存管理系统,并通知其进行库存调整。
- 消息持久化:RabbitMQ可以保证消息的持久化存储,以便在系统故障时能够恢复消息。例如,在电子商务平台中,如果订单处理系统出现故障,RabbitMQ可以保证订单消息不被丢失,并在系统恢复后继续处理。
总体来说,Kafka更适合大规模的数据流处理和实时数据处理场景,而RabbitMQ更适合消息路由和持久化存储场景,要选择适合自己项目的架构。
四、总结
Kafka和RabbitMQ都是用于消息传递的工具,它们具有不同的特性和应用场景。Kafka适合处理大规模的实时数据流,并具有高吞吐量和持久性特性,而RabbitMQ更适合消息路由和持久化存储,并具有消息确认机制和严格的消息顺序。在选择使用时,需要考虑到自身需求以及两者的特性和限制。
PS:可以结合使用:虽然Kafka和RabbitMQ具有不同的特性和应用场景,但它们可以结合使用,以获得更好的效果。例如,可以使用Kafka来处理大规模的实时数据流,并使用RabbitMQ来处理消息路由和持久化存储
本文简述一些特性以及区别,但是我们要应用于生产上的项目和结构还是要去看官方文档,文档里都有详细的方案,从而助我们更好的分辨需要用什么工具。本文如果有什么错误点欢迎大家指正。
Kafka与RabbitMQ的更多相关文章
- Kafka、RabbitMQ、RocketMQ消息中间件的对比 —— 消息发送性能-转自阿里中间件
引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦.现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注. ...
- 消息中间件选型分析——从Kafka与RabbitMQ的对比来看全局
一.前言 消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成.通过提供消息传递和消息排队模型,它可以在分布式环境下提供应用解耦 ...
- IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?
1.前言 在IM这种讲究高并发.高消息吞吐的互联网场景下,MQ消息中间件是个很重要的基础设施,它在IM系统的服务端架构中担当消息中转.消息削峰.消息交换异步化等等角色,当然MQ消息中间件的作用远不止于 ...
- 转 Kafka、RabbitMQ、RocketMQ等消息中间件的对比 —— 消息发送性能和优势
Kafka.RabbitMQ.RocketMQ等消息中间件的对比 —— 消息发送性能和优势 引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦.现在开源的消息中间件有很多,前 ...
- Kafka、RabbitMQ、RocketMQ消息中间件的对比 —— 消息发送性能
引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦.现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注. ...
- 在服务端处理同步发送小消息的性能上Kafka>RocketMQ>RabbitMQ
在发送小消息的场景中,三个消息中间件的表现区分明显: Kafka的吞吐量高达17.3w/s,远超其他两个产品.这主要取决于它的队列模式保证了写磁盘的过程是线性IO.此时broker磁盘IO已达瓶颈. ...
- Kafka、RabbitMQ、RocketMQ消息中间件的对比
引言 分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦.现在开源的消息中间件有很多,目前对Kafka.RabbitMQ.RocketMQ这三个消息中间件做下对比分析. - - k ...
- Kafka、RabbitMQ、RocketMQ、ActiveMQ 17 个方面综合对比
本文将从,Kafka.RabbitMQ.ZeroMQ.RocketMQ.ActiveMQ 17 个方面综合对比作为消息队列使用时的差异.(欢迎加入Java程序员群:630441304,一起学习交流会) ...
- 转:Kafka、RabbitMQ、RocketMQ消息中间件的对比 —— 消息发送性能 (阿里中间件团队博客)
from: http://jm.taobao.org/2016/04/01/kafka-vs-rabbitmq-vs-rocketmq-message-send-performance/ 引言 分布式 ...
- 17 个方面,综合对比 Kafka、RabbitMQ、RocketMQ、ActiveMQ 四个分布式消息队列
原文:https://mp.weixin.qq.com/s/lpsQ3dEZHma9H0V_mcxuTw 一.资料文档 二.开发语言 三.支持的协议 四.消息存储 五.消息事务 六.负载均衡 七.集群 ...
随机推荐
- python---序列化小结
python 序列化 1 什么叫序列化 在我们存储数据或网络传输数据时候,需要多我们对象进行处理,把对象处理成方便储存和网络传输的数据格式,这个过程叫做序列化 2 对象序列化有三种方式; 2.1 pi ...
- html+css实现二级导航栏效果,简单易看懂噢!
这应该是这几天以来看到的最简单易懂的有二级菜单栏的导航栏效果实现了 使用html+css实现,看了好几天导航栏的实现方式,要么是太复杂的需要JS或者框架的,要么是太简单仅仅使用div和超链接的, 再要 ...
- Windows系统中,如何快速找到端口被占用的进程?
在本地调试代码时,经常遇到端口被占用导致启动失败的问题,又不能很快找到哪个进程占用了端口,很是恼火. 今天,我们用shell命令轻松搞定. 一.打开命令提示符 window+R 组合键,调出命令窗口. ...
- 初识volatile
案例1:是否存在我不是我的问题 flag==!flag flag是boolean类型 了解volatile 概念 1.volatile如何保证内存可见性 2.volatile如何禁止指令重排序 ...
- 基于ggplot2的解剖图和组织模块可视化
摘要 将数据显示到解剖结构上,是一种可以快速观察组织相关信息的便捷技术.然而,绘制组织是一项复杂的任务(a complex task),需要解剖学和艺术方面的专业知识.虽然已经存在可用于在解剖图上显示 ...
- 前端vue自定义简单实用下拉筛选 下拉菜单
前端vue自定义简单实用下拉筛选 下拉菜单, 下载完整代码请访问: https://ext.dcloud.net.cn/plugin?id=13020 效果图如下: #### 使用方法 ``` ...
- 如何通过数据warehouse更好地支持企业数字化转型战略
目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 4. 应用示例与代码实现讲解 5. 优化与改进 <如何通过数据 warehouse 更好地支持企业数字化转型战略> 随着企业数 ...
- Java并发(十二)----线程应用之多线程解决烧水泡茶问题
1.背景 统筹方法,是一种安排工作进程的数学方法.它的实用范围极广泛,在企业管理和基本建设中,以及关系复杂的科研项目的组织与管理中,都可以应用. 怎样应用呢?主要是把工序安排好. 比如,想泡壶茶喝.当 ...
- C# - DTO 的字符串表达
第一阶段 重写 DTO 的 ToString() 方法.利用 Newtonsoft.Json 序列化 DTO 对象. 第二阶段 为 DTO 设置基类,重写基类的 ToString() 方法.利用 Sy ...
- XTTS系列之四:迷迷糊糊的并行度
项目测试组又反馈一个问题,XTTS执行全量备份速度慢,影响测试进度. 实际算了下,平均速度才150MB/s.. 这个速度在客户生产环境的确是不够看,首先询问是否开了并行,开了多少? 回复是说有开32个 ...