\(\mathbf{{\large {\color{Red} {欢迎到学科网下载资料学习}} } }\)【【高分突破系列】高二数学下学期同步知识点剖析精品讲义

\(\mathbf{{\large {{\color{Red} {跟贵哥学数学,so \quad easy!}} }}}\)

选择性必修第二册同步提高,难度3颗星!

模块导图

知识剖析

求数列的前项和是数列中常考的一大专题,其方法有公式法、倒序相加(乘)法、分组求和法与裂项相消法等,在掌握这些方法的时候要注意方法的适用范围,其中的计算量有些大,技巧性也较强,需要多加以理解与总结.

经典例题

【方法一】公式法

若已知数列是等差或等比数列,求其前\(n\)项和可直接使用对应的公式;若求和的式子对应某些公式,也可以直接使用.常见如下

\((1)\)等差数列求和公式\(S_{n}=\dfrac{n\left(a_{1}+a_{n}\right)}{2}=n a_{1}+\dfrac{n(n-1)}{2} d\)

\((2)\)等比数列求和公式\(S_{n}=\left\{\begin{array}{l}
n a_{1}, q=1 \\
\dfrac{a_{1}\left(1-q^{n}\right)}{1-q}, q \neq 1
\end{array}\right.\)

\((3)\)\(1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\dfrac{n(n+1)(2 n+1)}{6}\)

\((4)\)\(1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\dfrac{n(n+1)}{2}\right]^{2}\)

【典题1】求和式\(3+6+12+\cdots+3 \cdot 2^{n-2}\),先思考它是几项之和再求和.

【解析】和式\(3+6+12+\cdots+3 \cdot 2^{n-2}\)相当于数列\(3\)、\(6\)、\(12\)、…、\(3 \cdot 2^{n-2}\)的和,

显然它是首项\(a_1=3\),公比\(q=2\)的等比数列,

设前\(n\)项和为\(S_n\),

故\(a_{n}=a_{1} \cdot q^{n-1}=3 \cdot 2^{n-1}\),

而和式最后一项是\(3 \cdot 2^{n-2}=a_{n-1}\),是第\(n-1\)项,

故和式\(3+6+12+\cdots+3 \cdot 2^{n-2}\)只有\(n-1\)项而已,

则\(3+6+12+\cdots+3 \cdot 2^{n-2}\)

\({\color{Red}{ (切勿想当然和式等于S_n)}}\)

\(=S_{n-1}=\dfrac{a_{1}\left(1-q^{n-1}\right)}{1-q}=\dfrac{3\left(1-2^{n-1}\right)}{1-2}=3\left(2^{n-1}-1\right)\).

【点拨】求和式时特别要注意确定项数,以第一个数为首项,判断最后一项为第几项(第\(n\)项、第\(n-1\)项?)便可.

【典题2】已知等比数列\(\left\{a_{n}\right\}\)前\(n\)项和为\(S_n\),且\(S_{n}=a_{n+1}-\dfrac{1}{32}\left(n \in \boldsymbol{N}^{*}\right)\).

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)若\(b_{n}=\log _{2} a_{n}\),求数列\(\left\{\left|b_{n}\right|\right\}\)的前\(n\)项和\(T_n\).

【解析】(1)由于\(S_{n}=a_{n+1}-\dfrac{1}{32}\)①,

当\(n=1\)时,\(S_{1}=a_{2}-\dfrac{1}{32} \Rightarrow a_{2}=a_{1}+\dfrac{1}{32}\),

当\(n≥2\)时,\(S_{n-1}=a_{n}-\dfrac{1}{32}\)②,

①-②得\(a_{n}=a_{n+1}-a_{n}\),即\(a_{n+1}=2 a_{n}(n \geq 2)\)

\(∵\)数列\(\left\{a_{n}\right\}\)为等比数列,

\(∴a_2=2a_1\),又\(a_{2}=a_{1}+\dfrac{1}{32}\),解得\(a_{1}=\dfrac{1}{32}\).

故数列\(\left\{a_{n}\right\}\)是以\(\dfrac{1}{32}\)为首项,\(2\)为公比的等比数列,

所以\(a_{n}=2^{n-6}\).

(2)\(b_{n}=\log _{2} a_{n}=n-6\),

所以\(\left|b_{n}\right|=\left\{\begin{array}{l}
6-n, n<6 \\
n-6, n \geq 6
\end{array}\right.\),

\({\color{Red}{(遇到绝对值,则可利用|x|=\left\{\begin{array}{c}
x, x \geq 0 \\
-x, x<0
\end{array}\right.去掉绝对值,则求前n项和T_n时要注意分类讨论)
}}\)

当\(n<6\)时,

\(T_{n}=-b_{1}-b_{2}-\cdots-b_{n}=-\left(b_{1}+b_{2}+\cdots+b_{n}\right)\)

\(=-\left[-5 n+\dfrac{n(n-1)}{2}\right]=-\dfrac{n^{2}-11 n}{2}=\dfrac{11 n-n^{2}}{2}\)

\({\color{Red}{(b_n=n-6是等差数列,可由前n项和公式S_{n}=n a_{1}+\dfrac{n(n-1)}{2} d得b_{1}+\cdots+b_{n}=\dfrac{n^{2}-11 n}{2})
}}\)

当\(n≥6\)时,

\(\begin{aligned}
T_{n} &=-b_{1}-\cdots-b_{5}+b_{6}+\cdots+b_{n} \\
&=\left(b_{1}+b_{2}+\cdots+b_{n}\right)-2\left(b_{1}+\cdots+b_{5}\right) \\
&=\dfrac{n^{2}-11 n}{2}-2 \times \dfrac{5^{2}-11 \times 5}{2}=\dfrac{n^{2}-11 n}{2}+30
\end{aligned}\)

\(\therefore T_{n}=\left\{\begin{array}{l}
\dfrac{11 n-n^{2}}{2}, n<6 \\
\dfrac{n^{2}-11 n}{2}+30, n \geq 6
\end{array}\right.\).

【点拨】当确保数列为等差数列或等比数列,便可直接使用对应的前\(n\)项和公式,这需要明确等差数列通项公式形如\(a_n=kn+b\),等比数列通项公式形如\(a_n=A\cdot B^n\).

巩固练习

1(★★)求和式\(1+4+7+⋯+(3n+1)\).

 

 

2(★★)已知\(\left\{a_{n}\right\}\)是等差数列,公差\(d≠0\),\(a_1=1\),且\(a_1\),\(a_3\),\(a_9\)成等比数列,求数列\(\left\{2^{a_{n}}\right\}\)的前\(n\)项和\(S_n\).

3(★★)已知等差数列\(\left\{a_{n}\right\}\)前三项的和为\(-3\),前三项的积为\(15\),

(1)求等差数列\(\left\{a_{n}\right\}\)的通项公式;

(2)若公差\(d>0\),求数列\(\left\{\left|a_{n}\right|\right\}\)的前\(n\)项和\(T_n\).

4(★★★)设\(\left\{a_{n}\right\}\)是公比大于\(1\)的等比数列,\(S_n\)为数列\(\left\{a_{n}\right\}\)的前\(n\)项和.已知\(S_3=7\),且\(a_1+3\),\(3a_2\),\(a_3+4\)构成等差数列.

(1)求数列\(\left\{a_{n}\right\}\)的等差数列.

(2)令\(b_{n}=\ln a_{3 n+1}\),求数列\(\left\{b_{n}\right\}\)的前\(n\)项和\(T_n\).

参考答案

1.\(\dfrac{3 n^{2}+5 n+2}{2}\)

2.\(S_{n}=2^{n+1}-2\)

3.\((1) a_n=4n-9\)或\(a_n=7-4n\),\((2) T_{n}= \begin{cases}5, & n=1 \\ 2 n^{2}-7 n+12, & n \geq 2\end{cases}\)

4.\((1) a_{n}=2^{n-1}\),\((2) T_{n}=\dfrac{3 \ln 2}{2} n(n+1)\)

【方法二】 倒序相加(乘)法

1 对于某个数列\(\left\{a_{n}\right\}\),若满足\(a_{1}+a_{n}=a_{2}+a_{n-1}\)\(=\cdots=a_{k}+a_{n-k+1}\),则求前\(n\)项和\(S_n\)可使用倒序相加法.

具体解法:设\(S_{n}=a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\)①

把①反序可得\(S_{n}=a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}\)②

由①+②得\(2 S_{n}=\left(a_{1}+a_{n}\right)+\left(a_{2}+a_{n-1}\right)+\cdots+\left(a_{n-1}+a_{2}\right)+\left(a_{n}+a_{1}\right)\)\(\Rightarrow S_{n}=\dfrac{\left(a_{1}+a_{n}\right) n}{2}\).

2 对于某个数列\(\left\{a_{n}\right\}\),若满足\(a_{1} a_{n}=a_{2} a_{n-1}=\cdots=a_{k} a_{n-k+1}\),则求前\(n\)项积\(T_n\)可使用倒序相乘法.具体解法类同倒序相加法.

【典题1】设\(f(x)=\dfrac{1}{4^{x}+2}\),利用课本中推导等差数列前\(n\)项和的公式的方法,可求得\(f(-3)+f(-2)+⋯+f(0)+⋯+f(3)+f(4)\)的值为\(\underline{\quad \quad}\).

【解析】设\(a+b=1\),

则\(f(a)+f(b)=\dfrac{1}{4^{a}+2}+\dfrac{1}{4^{b}+2}\)\(=\dfrac{4^{b}}{\left(4^{a}+2\right) 4^{b}}+\dfrac{1}{4^{b}+2}\)\(=\dfrac{4^{b}}{4+2 \cdot 4^{b}}+\dfrac{1}{4^{b}+2}\)\(=\dfrac{4^{b}+2}{2\left(4^{b}+2\right)}=\dfrac{1}{2}\).

所以\(f(-3)+f(4)=\dfrac{1}{2}\),\(f(-2)+f(3)=\dfrac{1}{2}\),\(f(-1)+f(2)=\dfrac{1}{2}\),\(f(0)+f(1)=\dfrac{1}{2}\),

\(f(-3)+f(-2)+\cdots+f(0)+\cdots+f(3)+f(4)\)\(=4 \times \dfrac{1}{2}=2\).

【点拨】课本中推导等差数列前\(n\)项和的公式的方法就是倒序相加法.

【典题2】求\(\sin ^{2} 1^{\circ}+\sin ^{2} 2^{\circ}+\sin ^{2} 3^{\circ}+\cdots+\sin ^{2} 88^{\circ}+\sin ^{2} 89^{\circ}\)的值

【解析】设\(\sin ^{2} 1^{\circ}+\sin ^{2} 2^{\circ}+\sin ^{2} 3^{\circ}+\cdots+\sin ^{2} 88^{\circ}+\sin ^{2} 89^{\circ}\)…………. ①

将①式右边反序得

\(S=\sin ^{2} 89^{\circ}+\sin ^{2} 88^{\circ}+\cdots+\sin ^{2} 3^{\circ}+\sin ^{2} 2^{\circ}+\sin ^{2} 1^{\circ}\)…………..②

①+②得

\(\begin{aligned}
2 S &=\left(\sin ^{2} 1^{\circ}+\sin ^{2} 89^{\circ}\right)+\left(\sin ^{2} 2^{\circ}+\sin ^{2} 88^{\circ}\right)+\cdots+\left(\sin ^{2} 89^{\circ}+\sin ^{2} 1^{\circ}\right) \\
&=\left(\sin ^{2} 1^{\circ}+\cos ^{2} 1^{\circ}\right)+\left(\sin ^{2} 2^{\circ}+\cos ^{2} 2^{\circ}\right)+\cdots+\left(\sin ^{2} 89^{\circ}+\cos ^{2} 89^{\circ}\right) \\
&=89
\end{aligned}\)

\(∴S=44.5\).

【点拨】对于某个数列\(\left\{a_{n}\right\}\),若满足\(a_{1}+a_{n}\)\(=a_{2}+a_{n-1}=\cdots=a_{k}+a_{n-k+1}\),则可使用倒序相加法.

【典题3】设函数\(f(x)=\dfrac{2^{x}}{2^{x}+\sqrt{2}}\)的图象上两点\(P_1 (x_1 ,y_1)\)、\(P_2 (x_2 ,y_2)\),若\(\overrightarrow{O P}=\dfrac{1}{2}\left(\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}\right)\),且点\(P\)的横坐标为\(\dfrac{1}{2}\).

(1)求证:\(P\)点的纵坐标为定值,并求出这个定值;

(2)求\(S_{n}=f\left(\dfrac{1}{n}\right)+f\left(\dfrac{2}{n}\right)+\cdots+f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{n}{n}\right)\).

【解析】(1)证:\(∵\overrightarrow{O P}=\dfrac{1}{2}\left(\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}\right)\),

\(∴P\)是\(P_1 P_2\)的中点\(⇒x_1+x_2=1\)

\(\therefore y_{1}+y_{2}=f\left(x_{1}\right)+f\left(x_{2}\right)\)\(=\dfrac{2^{x_{1}}}{2^{x_{1}}+\sqrt{2}}+\dfrac{2^{x_{2}}}{2^{x_{2}}+\sqrt{2}}\)\(=\dfrac{2^{x_{1}}}{2^{x_{1}}+\sqrt{2}}+\dfrac{2^{1-x_{1}}}{2^{1-x_{1}}+\sqrt{2}}\)\(=\dfrac{2^{x_{1}}}{2^{x_{1}}+\sqrt{2}}+\dfrac{2}{\sqrt{2} \cdot 2^{x_{1}+2}}=1\).

\(\therefore y_{p}=\dfrac{1}{2}\left(y_{1}+y_{2}\right)=\dfrac{1}{2}\).

(2)解:由(1)知\(x_1+x_2=1\),\(f (x_1)+f (x_2)=y_1+y_2=1\),\(f(1)=2-\sqrt{2}\),

\({\color{Red}{(即横坐标之和为1,则对应的坐标之和为1,则有f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n-1}{n}\right)=f\left(\dfrac{k}{n}\right)+f\left(\dfrac{n-k}{n}\right)=1,想到倒序相加法)}}\)

由\(S_{n}=f\left(\dfrac{1}{n}\right)+f\left(\dfrac{2}{n}\right)+\cdots+f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{n}{n}\right)\)

得\(S_{n}=f\left(\dfrac{n}{n}\right)+f\left(\dfrac{n-1}{n}\right)+\cdots+f\left(\dfrac{2}{n}\right)+f\left(\dfrac{1}{n}\right)\)

两式相加得

\(\begin{aligned}
2 S_{n}=& f(1)+\left[f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n-1}{n}\right)\right]+\left[f\left(\dfrac{2}{n}\right)+f\left(\dfrac{n-2}{n}\right)\right]+\cdots +\left[f\left(\dfrac{n-1}{n}\right)+f\left(\dfrac{1}{n}\right)\right]+f(1) \\
=& 2 f(1)+n-1 \\
=& n+3-2 \sqrt{2}
\end{aligned}\)

\(\therefore S_{n}=\dfrac{n+3-2 \sqrt{2}}{2}\).

巩固练习

1(★★)设等差数列\(\left\{a_{n}\right\}\),公差为\(d\),求证:\(\left\{a_{n}\right\}\)的前\(n\)项和\(S_{n}=\dfrac{\left(a_{1}+a_{n}\right) n}{2}\).

2(★★)设\(f(x)=(x-1)^3+1\),求\(f(-4)+⋯\)\(+f(0)+⋯+f(5)+f(6)\)的值为\(\underline{\quad \quad}\)

3(★★)设函数\(f(x)=\dfrac{x^{2}}{1+x^{2}}\),求\(f(1)+f(2)\)\(+f\left(\dfrac{1}{2}\right)+f(3)+f\left(\dfrac{1}{3}\right)+f(4)+f\left(\dfrac{1}{4}\right)\)的值\(\underline{\quad \quad}\).

参考答案

1.提示:倒序相加法

2.\(11\)

3.\(\dfrac{7}{2}\)

【方法三】 分组求和法

1 若数列\(\{c_n\}\)中通项公式\(c_n=a_n+b_n\),可分成两个数列\(\left\{a_{n}\right\}\),\(\{b_n\}\)之和,则数列\(\{c_n\}\)的前\(n\)项和等于两个数列\(\left\{a_{n}\right\}\),\(\{b_n\}\)的前\(n\)项和的和.

2 常见的是\(c_n=\)等差+等比形式,分组求和法的解题套路如下



3 等比数列的通项公式形如\(a_n=kn+b\),等差数列的通项公式形如\(a_n=A\cdot B^n\).

【典题1】求数列\(\left\{3^{n}+2 n-1\right\}\)的前\(n\)项和为\(S_n\).

【解析】设\(a_n=3^n+2n-1\),

\({\color{Red}{(数列\left\{3^{n}\right\}是等比数列, \{2 n-1\}是等差数列)}}\)

则\(S_n=a_1+a_2+a_3+⋯+a_n\)

\(=(3^1+1)+(3^2+3)+(3^3+5)+⋯(3^n+2n-1)\)

\({\color{Red}{(把等比项和等差项分别放在一组) }}\)

\(=(3^1+3^2+3^3+⋯+3^n )+(1+3+5+⋯+2n-1)\)

\({\color{Red}{(确定好首项和公差、公比) }}\)

\(=\dfrac{3\left(1-3^{n}\right)}{1-3}+\dfrac{(1+2 n-1) n}{2}\)

\(=\dfrac{3^{n+1}}{2}+n^{2}-\dfrac{3}{2}\).

【典题2】已知等差数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),且\(a_5=5a_1\),\(S_3-a_2=8\).

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)若数列\(\{b_n\}\)满足\((n×2^n+S_n)b_n=a_n\),求数列\(\left\{\dfrac{1}{b_{n}}\right\}\)的前\(n\)项和\(T_n\).

【解析】(1)等差数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),

设公差为\(d\),且\(a_5=5a_1\),\(S_3-a_2=8\).

\(\therefore\left\{\begin{array}{l}
a_{1}+4 d=5 a_{1} \\
2 a_{1}+2 d=8
\end{array}\right.\),解得\(\left\{\begin{array}{c}
a_{1}=2 \\
d=2
\end{array}\right.\),

故\(a_n=2n\);

(2)由于\(a_n=2n\),

\(\therefore S_{n}=\dfrac{(2+2 n) n}{2}=n^{2}+n\),

又\(∵\)数列\(\{b_n\}\)满足\(\left(n 2^{n}+S_{n}\right) b_{n}=a_{n}\),

\(\therefore \dfrac{1}{b_{n}}=\dfrac{2^{n}+n+1}{2}\),

则\(T_{n}=\dfrac{1}{b_{1}}+\dfrac{1}{b_{2}}+\cdots+\dfrac{1}{b_{n}}\)\(=\dfrac{1}{2}\left[\left(2^{1}+2^{2}+\ldots+2^{n}\right)+\left(\dfrac{n(n+1)}{2}+n\right)\right]\)\(=2^{n}+\dfrac{n^{2}}{4}+\dfrac{3 n}{4}-1\).

【典题3】设数列\(\left\{a_{n}\right\}\)满足\(a_1=1\),\(\dfrac{a_{n+1}}{a_{n}}=2^{n}\)\((n∈N^*)\).

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)设\(b_{n}=\log _{2} a_{n}\),求数列\(b_2+b_3+⋯+b_{100}\)的值.

【解析】(1)数列\(\left\{a_{n}\right\}\)满足\(a_1=1\),\(\dfrac{a_{n+1}}{a_{n}}=2^{n}\)\((n∈N^*)\).

\(\therefore a_{n}=\left(\dfrac{a_{n}}{a_{n-1}} \cdot \dfrac{a_{n-1}}{a_{n-2}} \cdots \dfrac{a_{2}}{a_{1}}\right) \cdot a_{1}(n \geq 2)\),

\(\therefore a_{n}=\left(2^{n-1} \cdot 2^{n-2} \cdots 2\right) \times 1=2^{\dfrac{n(n-1)}{2}}(n \geq 2)\),

当\(n=1\)时,\(a_1=1\)也符合上式,

\(∴\)数列\(\left\{a_{n}\right\}\)的通项公式为\(a_{n}=2^{\dfrac{n(n-1)}{2}}\).

(2)\(\because b_{n}=\log _{2} a_{n}=\dfrac{n(n-1)}{2}=\dfrac{n^{2}-n}{2}=\dfrac{1}{2}\left(n^{2}-n\right)\),

\(\therefore b_{2}+b_{3}+\cdots+b_{100}=\dfrac{1}{2}\left[\left(2^{2}+3^{2}+\cdots+100^{2}\right)-(2+3+\cdots+100)\right]\)

\({\color{Red}{(数列\{b_n\}分成数列\left\{n^{2}\right\}和\left\{n\right\},再用公式法求解)}}\)

\(=\dfrac{1}{2}\left[\left(1^{2}+2^{2}+3^{2}+\cdots+100^{2}\right)-(1+2+3+\cdots+100)\right]\)

\(=\dfrac{1}{2}\left[\dfrac{100 \times(100+1) \times(2 \times 100+1)}{6}-\dfrac{100 \times(100+1)}{2}\right]\)\(=166650\)

巩固练习

1(★★)已知数列\(\left\{a_{n}\right\}\)的通项\(a_n=2^n+n\),若数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),则\(S_8=\)\(\underline{\quad \quad}\).

2(★★)数列\(1 \dfrac{1}{2}\),\(2 \dfrac{1}{4}\),\(3 \dfrac{1}{8}\),…,\(n+\dfrac{1}{2^{n}}\)的前\(n\)项和为\(S_n=\)\(\underline{\quad \quad}\)  .

3(★★★)已知数列\(\left\{a_{n}\right\}\)是等比数列,公比为\(q\),数列\(\{b_n\}\)是等差数列,公差为\(d\),且满足:\(a_1=b_1=1\),\(b_2+b_3=4a_2\),\(a_3-3b_2=-5\).

(1)求数列\(\left\{a_{n}\right\}\)和\(\{b_n\}\)的通项公式;

(2)设\(c_n=a_n+b_n\),求数列\(\{c_n\}\)的前\(n\)项和\(S_n\).

4(★★★)已知公差不为\(0\)的等差数列\(\left\{a_{n}\right\}\)的前9项和\(S_9=45\),且第\(2\)项、第\(4\)项、第\(8\)项成等比数列.

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)若数列\(\{b_n\}\)满足\(b_{n}=a_{n}+\left(\dfrac{1}{2}\right)^{n-1}\),求数列\(\{b_n\}\)的前\(n\)项和\(T_n\).

参考答案

1.\(546\)

2.\(S_{n}=\dfrac{n(n+1)}{2}-\dfrac{1}{2^{n}}+1\)

3.\((1) a_n=2^{n-1}, b_n=2n-1\)\((2) 2^n+n^2-1\)

4.\((1) a_n=n\)\((2) T_{n}=\dfrac{n^{2}+n+4}{2}-\dfrac{1}{2^{n-1}}\)

【方法四】 错位相减法

当数列\(\left\{a_{n}\right\}\)的通项公式\(a_n=b_n⋅ c_n\),其中\(\{b_n\}\)为等差数列,\(\{c_n\}\)为等比数列.

其解题套路如下

【典题1】已知递增的等比数列\(\left\{a_{n}\right\}\)满足\(a_2+a_3+a_4=28\),且\(a_3+2\)是\(a_2\),\(a_4\)的等差中项.

(1)求数列\(\left\{a_{n}\right\}\)的通项公式\(a_n\);

(2)令\(b_{n}=a_{n} \cdot \log _{\frac{1}{2}} a_{n}\),\(S_{n}=b_{1}+b_{2}+\cdots+b_{n}\),求\(S_n\).

【解析】(1)设数列\(\left\{a_{n}\right\}\)的公比为\(q\),

由题意可知\(\left\{\begin{array}{l}
a_{2}+a_{3}+a_{4}=28 \\
2\left(a_{3}+2\right)=a_{2}+a_{4}
\end{array}\right.\),

即\(\left\{\begin{array} { l }
{ a _ { 3 } = 8 } \\
{ a _ { 2 } + a _ { 4 } = 2 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a_{1} q^{2}=8 \\
a_{1} q+a_{1} q^{3}=20
\end{array}\right.\right.\),

解得\(\left\{\begin{array}{l}
a_{1}=2 \\
q=2
\end{array}\right.\)或\(\left\{\begin{array}{l}
a_{1}=32 \\
q=\dfrac{1}{2}
\end{array}\right.\)(舍)

\(\therefore a_{n}=2 \cdot 2^{n-1}=2^{n}\).

(2)\(b_{n}=a_{n} \cdot \log _{\frac{1}{2}} a_{n}=2^{n} \cdot \log _{\frac{1}{2}} 2^{n}=-n \cdot 2^{n}\),

\({\color{Red}{(其中\{n\}是等差数列, \{2^n\}是等比数列,可用错位相减法)}}\)

\(\therefore S_{n}=-1 \times 2-2 \times 2^{2}-3 \times 2^{3}-\cdots-(n-1) \times 2^{n-1}-n \times 2^{n}\)...... (1)

\(2 S_{n}=\quad \quad-1 \times 2^{2}-2 \times 2^{3}-3 \times 2^{4}-\cdots-(n-1) \times 2^{n}-n \times 2^{n+1}\)...... (2)

\(∴(1)-(2)\)得

\(-S_{n}=-\left(2+2^{2}+2^{3}+\cdots 2^{n}\right)+n \times 2^{n+1}\)\(=-\dfrac{2-2^{n+1}}{1-2}+n \times 2^{n+1}\)\(=(n-1) \times 2^{n+1}+2\)

\(\therefore S_{n}=(1-n) \times 2^{n+1}-2\).

\({\color{Red}{ (最后可用S_2检验运算结果是否正确)}}\)

【典题2】已知正项数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),满足\(a_n^2+a_n-2S_n=0\)\((n∈N^*)\).

(1)求数列\(\left\{a_{n}\right\}\)通项公式;

(2)记数列\(\{b_n\}\)的前\(n\)项和为\(S_n\),若\(b_n=(2a_n-7) 2^n\),求\(T_n\);

(3)求数列\(\{T_n\}\)的最小项.

【解析】(1)由\(a_n^2+a_n-2S_n=0\),

得到\(a_{n+1}^{2}+a_{n+1}-2 S_{n+1}=0\),

两式相减得\(\left(a_{n+1}^{2}-a_{n}^{2}\right)+\left(a_{n+1}-a_{n}\right)-2\left(S_{n+1}-S_{n}\right)=0\),

整理得\(\left(a_{n+1}+a_{n}\right)\left(a_{n+1}-a_{n}-1\right)=0\),

由于数列\(\left\{a_{n}\right\}\)是正项数列,

所以\(a_{n+1}-a_{n}=1\),

当\(n=1\)时,解得\(a_1=1\).

故\(a_n=1+n-1=n\).

(2)由(1)得:\(b_n=(2n-7)⋅2^n\),

\({\color{Red}{(其中\{2n-7\}是等差数列, \{2^n\}是等比数列,可用错位相减法)}}\)

\(\therefore T_{n}=(-5) \cdot 2^{1}+(-3) \cdot 2^{2}+(-1) \cdot 2^{3}+\cdots+(2 n-9) \cdot 2^{n-1}+(2 n-7) \cdot 2^{n}\)

...... (1) ,

\(2 T_{n}=\quad(-5) \cdot 2^{2}+(-3) \cdot 2^{3}+(-1) \cdot 2^{3}+\cdots+(2 n-9) \cdot 2^{n}+(2 n-7) \cdot 2^{n+1}\)

...... (2)

(1)-(2) 得\(-T_{n}=(-5) \times 2+2^{3}+2^{4}+\cdots+2^{n+1}-(2 n-7) \cdot 2^{n+1}\),

化简得\(T_{n}=(2 n-9) \cdot 2^{n+1}+18\).

(3)\(T_{n+1}-T_{n}\)\(=(2 n-7) \cdot 2^{n+2}+18-(2 n-9) \cdot 2^{n+1}-18\)\(=(2 n-5) \cdot 2^{n+1}\)

\({\color{Red}{(做差法判断数列\{T_n\}的单调性,从而求出最小项)}}\)

当\(n≤2\)时,\(T_{n+1}<T_{n}\),当\(n≥3\)时,\(T_{n+1}>T_{n}\),

故\(T_1>T_2>T_3<T_4<T_5<⋯\),

故数列\(\{T_n\}\)的最小值为\(T_3=-30\).

巩固练习

1(★★★)设等差数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),且\(S_4=4S_2\),\(a_{2n}=2a_n+1\).

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)设数列\(\{b_n\}\)满足\(b_{n}=\dfrac{2\left(a_{n}-1\right)}{4^{n}}\),求数列\(\{b_n\}\)的前\(n\)项和\(R_n\).

2(★★★)正项数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),且\(8S_n=(a_n+2)^2\)\((n∈N^*)\).

(1)求\(a_1\),\(a_2\)的值及数列\(\left\{a_{n}\right\}\)的通项公式;

(2)记\(c_{n}=\dfrac{a_{n}}{3^{n}}\),数列\(\{c_n\}\)前\(n\)的和为\(T_n\),求证:\(T_n<2\).

3(★★★)已知等比数列\(\left\{a_{n}\right\}\)满足\(a_1=2\),\(a_2=4(a_3-a_4)\),正项数列\(\{b_n\}\)前\(n\)项和为\(S_n\),且\(2 \sqrt{S_{n}}=b_{n}+1\).

(1)求数列\(\left\{a_{n}\right\}\)和\(\{b_n\}\)的通项公式;

(2)令\(c_{n}=\dfrac{b_{n}}{a_{n}}\),求数列\(\{c_n\}\)的前\(n\)项和\(T_n\);

(3)若\(λ>0\),求对所有的正整数\(n\)都有\(2λ^2-kλ+2>a_{2n}b_n\)成立的\(k\)的取值范围.

4(★★★)已知数列\(\left\{a_{n}\right\}\)满足:\((n+1) a_{n+1}-(n+2) a_{n}=(n+1)(n+2)\)\((n∈N^*)\)且\(a_1=4\),数列\(\{b_n\}\)的前\(n\)项和为\(S_n\)满足:\(S_n=2b_n-1\)\((n∈N^*)\).

(1)证明数列\(\left\{\dfrac{a_{n}}{n+1}\right\}\)为等差数列,并求数列\(\left\{a_{n}\right\}\)和\(\{b_n\}\)的通项公式;

(2)若\(c_{n}=\left(\sqrt{a_{n}}-1\right) b_{n+1}\),数列\(\{c_n\}\)的前\(n\)项和为\(T_n\),对任意的\(n∈N^*\),\(T_{n} \leq n S_{n+1}-m-2\)恒成立,求实数\(m\)的取值范围.

参考答案

  1. \((1) a_n=2n-1\)\((2) R_{n}=\dfrac{1}{9}\left(4-\dfrac{3 n+1}{4^{n-1}}\right)\)

  2. \((1) a_n=4n-2\)\((2) T_{n}=2-\dfrac{2 n+2}{3^{n}}<2\)

  3. \((1)a_{n}=\dfrac{1}{2^{n-2}},b_{n}=2 n-1\)

    \((2)T_{n}=\dfrac{3}{2}+(2 n-3) \cdot 2^{n-1}\)

    \((3)(-\infty, 2 \sqrt{2})\)

  4. \((1) a_{n}=(n+1)^{2}, b_{n}=2^{n-1}\)

    \((2) m≤-1\)

【方法五】 裂项相消法

常见裂项公式

\((1)\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\),\(\dfrac{1}{n(n+k)}=\dfrac{1}{k}\left(\dfrac{1}{n}-\dfrac{1}{n+k}\right)\)

\((2)\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\),\(\dfrac{1}{\sqrt{n+k}+\sqrt{n}}=\dfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\)

【典题1】设等差数列\(\left\{a_{n}\right\}\)满足\(a_2=5\),\(a_6+a_8=30\),则数列\(\left\{\dfrac{1}{a_{n}^{2}-1}\right\}\)的前\(n\)项的和等于\(\underline{\quad \quad}\).

【解析】\(∵a_6+a_8=30\),\(∴a_7=15\),

又\(∵a_2=5\),\(\therefore d=\dfrac{15-5}{7-2}=2\),

\(∴a_n=a_2+(n-2)d=2n+1\),

\(∴a_n^2=(2n+1)^2=4n^2+4n+1\),

\(\therefore \dfrac{1}{a_{n}^{2}-1}=\dfrac{1}{4 n^{2}+4 n}=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\({\color{Red}{ (因式分解裂项是关键) }}\)

\(∴\)数列\(\left\{\dfrac{1}{a_{n}^{2}-1}\right\}\)的前\(n\)项的和为:

\(\dfrac{1}{4}\left[\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right]\)\(=\dfrac{1}{4}\left[1-\dfrac{1}{n+1}\right]=\dfrac{n}{4(n+1)}\).

【点拨】

本题是用了常见的裂项公式\(\dfrac{1}{n(n+1)}=\dfrac{1}{n}-\dfrac{1}{n+1}\),\(\dfrac{1}{n(n+k)}=\dfrac{1}{k}\left(\dfrac{1}{n}-\dfrac{1}{n+k}\right)\),

思考下以下各项怎么裂项:\(a_{n}=\dfrac{1}{n^{2}-n}(n \geq 2)\),\(a_{n}=\dfrac{1}{2 n^{2}+4 n}\),\(a_{n}=\dfrac{1}{n^{2}+3 n}\).

【典题2】数列\(\left\{a_{n}\right\}\)的通项公式\(a_{n}=\dfrac{1}{\sqrt{n+2}+\sqrt{n+3}}\),则该数列的前\(n\)项和为\(S_n\)等于\(\underline{\quad \quad}\).

【解析】\(a_{n}=\dfrac{1}{\sqrt{n+2}+\sqrt{n+3}}\)\(=\dfrac{\sqrt{n+3}-\sqrt{n+2}}{(\sqrt{n+2}+\sqrt{n+3})(\sqrt{n+3}-\sqrt{n+2})}\)\(=\dfrac{\sqrt{n+3}-\sqrt{n+2}}{(n+3)-(n+2)}=\sqrt{n+3}-\sqrt{n+2}\)

\(\begin{aligned}
\therefore S_{n}=& a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n} \\
=&(\sqrt{4}-\sqrt{3})+(\sqrt{5}-\sqrt{4})+(\sqrt{6}-\sqrt{5})+\cdots \\
&+(\sqrt{n+2}-\sqrt{n+1})+(\sqrt{n+3}-\sqrt{n+2}) \\
=& \sqrt{n+3}-\sqrt{3} .
\end{aligned}\)

【点拨】

① 本题是用了常见的裂项公式\(\dfrac{1}{\sqrt{n+k}+\sqrt{n}}=\dfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\),有些类似分母有理化,\(\sqrt{n+k}+\sqrt{n+b}\)与\(\sqrt{n+k}-\sqrt{n+b}\)互为“共轭根式”.

② 思考下以下各项怎么裂项:\(a_{n}=\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\),\(a_{n}=\dfrac{1}{\sqrt{n+3}-\sqrt{n}}\),\(a_{n}=\dfrac{1}{\sqrt{n+1}-\sqrt{n-1}}\).

【典题3】等比数列\(\left\{a_{n}\right\}\)中,\(a_1=2\),\(q=2\),数列\(b_{n}=\dfrac{a_{n+1}}{\left(a_{n+1}-1\right)\left(a_{n}-1\right)}\),\(\{b_n\}\)的前\(n\)项和为\(T_n\),则\(T_{10}\)的值为\(\underline{\quad \quad}\).

【解析】由题意,可知\(a_{n}=2 \times 2^{n-1}=2^{n}\),\(n∈N^*\)

则\(b_{n}=\dfrac{a_{n+1}}{\left(a_{n+1}-1\right)\left(a_{n}-1\right)}=\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)\(=2\left(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\right)\)

\(\begin{aligned}
\therefore T_{10}=& b_{1}+b_{2}+\cdots+b_{10} \\
=& 2\left(\dfrac{1}{2^{1}-1}-\dfrac{1}{2^{2}-1}+\dfrac{1}{2^{2}-1}-\dfrac{1}{2^{3}-1}+\cdots+\dfrac{1}{2^{10}-1}-\dfrac{1}{2^{11}-1}\right) \\
=& 2\left(\dfrac{1}{2^{1}-1}-\dfrac{1}{2^{11}-1}\right) \\
=& \dfrac{4092}{2047} .
\end{aligned}\).

【点拨】

① 本题的裂项\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}=2\left(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\right)\)需要一些技巧,可这么猜想\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)中分母有\(2^{n+1}-1\)与\(2^n-1\),往裂项的角度思考,那它是否等于\(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\)(当然是分母小的减去分母大)呢?我们就看下\(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\)通分后的结果\(\dfrac{2^{n}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)与“目标\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}\)”不相等,但是\(2\)倍的关系,故可得\(\dfrac{2^{n+1}}{\left(2^{n+1}-1\right)\left(2^{n}-1\right)}=2\left(\dfrac{1}{2^{n}-1}-\dfrac{1}{2^{n+1}-1}\right)\)

② 在裂项的技巧中,大胆猜想再小心验证便可.

思考下以下各项怎么裂项:\(a_{n}=\dfrac{2^{n-1}}{\left(2^{n-1}+1\right)\left(2^{n}+1\right)}\),\(a_{n}=\dfrac{2 \cdot 3^{n-1}}{\left(2 \cdot 3^{n-1}+2\right)\left(2 \cdot 3^{n}+2\right)}\).

【典题4】已知数列\(\left\{a_{n}\right\}\)满足\(a_n≠0\),\(a_{1}=\dfrac{1}{3}\),\(a_{n-1}-a_{n}=2 a_{n} a_{n-1}\)\((n≥2 ,n∈N^*)\).

(1)求证:\(\left\{\dfrac{1}{a_{n}}\right\}\)是等差数列;

(2)证明:\(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}<\dfrac{1}{4}\).

【解析】证明:(1)\(\because a_{n-1}-a_{n}=2 a_{n} a_{n-1}\)\((n≥2 ,n∈N^*)\)

\(\therefore \dfrac{1}{a_{n}}-\dfrac{1}{a_{n-1}}=2(n \geq 2)\)

\(\therefore\left\{\dfrac{1}{a_{n}}\right\}\)是以3为首项,\(2\)为公差的等差数列.

(2)由(1)知:\(\dfrac{1}{a_{n}}=3+(n-1) \cdot 2=2 n+1\)

\(\therefore a_{n}=\dfrac{1}{2 n+1}\)

\(\therefore a_{n}^{2}=\dfrac{1}{(2 n+1)^{2}}\)\(<\dfrac{1}{4 n^{2}+4 n}=\dfrac{1}{4 n(n+1)}\)\(=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\) \({\color{Red}{(放缩法) }}\)

\(\begin{aligned}
&\therefore a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \\
&<\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\cdots+\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right) \\
&<\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots+\dfrac{1}{n}-\dfrac{1}{n+1}\right) \\
&=\dfrac{1}{4}\left(1-\dfrac{1}{n+1}\right)<\dfrac{1}{4}
\end{aligned}\)

【点拨】

① 在数列中求证不等式,利用放缩法是常用的方法,但技巧性较高.

② 要证明\(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}<\dfrac{1}{4}\),用到放缩法的话,可考虑把\(a_{n}^{2}=\dfrac{1}{(2 n+1)^{2}}\)“放大些”,则要把分母\((2 n+1)^{2}=4 n^{2}+4 n+1\)“缩小些”,缩小多少呢?那“消掉”常数项1,对\(4n^2+4n+1\)来说“影响较小”,并且\(a_{n}^{2}=\dfrac{1}{(2 n+1)^{2}}<\dfrac{1}{4 n^{2}+4 n}=\dfrac{1}{4 n(n+1)}\)\(=\dfrac{1}{4}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)放缩后还能裂项求和.

巩固练习

1(★★)数列\(\left\{a_{n}\right\}\)满足\(a_{n}=\dfrac{1}{(2 n+1)(2 n+3)}\),\(n∈N^*\),其前\(n\)项和为\(S_n\).若\(S_n<M\)恒成立,则\(M\)的最小值为\(\underline{\quad \quad}\).

2(★★★)已知正项数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),对\(∀n∈N^*\)有\(2S_n=a_n^2+a_n\).令\(b_{n}=\dfrac{1}{a_{n} \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_{n}}}\),设\(\left\{b_{n}\right\}\)的前\(n\)项和为\(T_n\),则在\(T_1\),\(T_2\),\(T_3\),… ,\(T_{100}\)中有理数的个数为\(\underline{\quad \quad }\).

3(★★★)已知数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),且满足\(a_1=2\),\(S_{n}=a_{n+1}-2^{n+2}+2\),\(n∈N^*\).

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)设\(b_{n}=\dfrac{2^{n}}{a_{n}}\),记数列\(\left\{b_{n} b_{n+1}\right\}\)的前\(n\)项和为\(T_n\),证明:\(\dfrac{1}{2} \leq T_{n}<1\).

4(★★★)已知数列\(\left\{a_{n}\right\}\)满足\(a_1=1\),\(a_{n+1}=\dfrac{a_{n}}{a_{n}+1}\).

(1)证明:数列\(\left\{\dfrac{1}{a_{n}}\right\}\)是等差数列,并求数列\(\{a_n\}\)的通项公式;

(2)设\(b_{n}=\dfrac{a_{n}}{n+2}\),求数列\(\{b_n\}\)前\(n\)项和\(S_n\).

5(★★★)设数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),已知\(a_n>0\),\(a_n^2+2a_n=4S_n+3\).

(1)求\(\{a_n\}\)的通项公式;

(2)若数列\(\{b_n\}\)满足\(b_{n}=\dfrac{2 n+1}{n^{2}\left(a_{n+1}-1\right)^{2}}\),求\(\{b_n\}\)的前\(n\)项和\(T_n\).

6(★★★★)设\(S_n\)为数列\(\left\{a_{n}\right\}\)的前\(n\)项和,且\(S_{n+1}=3 S_{n}+4 n\)\((n∈N^*)\),\(a_1=0\).

(1)求证:数列\(\left\{a_{n}+2\right\}\)是等比数列;

(2)若对任意\(T_n\)为数列\(\left\{\dfrac{a_{n}+2}{\left(a_{n}+4\right)\left(a_{n+1}+4\right)}\right\}\)的前\(n\)项和,求证:\(T_{n}<\dfrac{1}{2}\).

7(★★★★)已知数列\(\left\{a_{n}\right\}\)的前\(n\)项和为\(S_n\),已知\(a_1=2\),\(6 S_{n}=3 n a_{n+1}-2n(n+1)(n+2)\),\(n∈N^*\).

(1)求数列\(\left\{a_{n}\right\}\)的通项公式;

(2)证明:\(\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\cdots+\dfrac{1}{a_{n}}<\dfrac{5}{6}\).

参考答案

  1. \(\dfrac{1}{6}\)

  2. \(9\)

  3. \((1)a_n=n\cdot 2^n\)

    \((2)\)提示\(T_{n}=1-\dfrac{1}{n+1}\)

  4. \((1)a_{n}=\dfrac{1}{n}\)

    \((2)S_{n}=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\)

  5. \((1)a_n=2n+1\)

    \((2)T_{n}=\dfrac{n^{2}+2 n}{4(n+1)^{2}}\)

  6. \((1)\)提示:定义法证明

    \((2)\)提示:裂项相消法求\(T_{n}=\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{3^{n}+1}\right)\)

  7. \((1)a_n=2n^2\)

    \((2)\)提示:放缩法、裂项相消法

专题 求数列的前n项和的更多相关文章

  1. 数列的前$n$项和$S_n$的求法

    相关公式 ①等差数列的\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\) ②等比数列的\(S_n=\left\{\begin{arr ...

  2. 数列的前N项之和

    时间限制: 1 Sec  内存限制: 128 MB 提交: 393  解决: 309 [提交][状态][讨论版] 题目描述 有一分数序列: 2/1 3/2 5/3 8/5 13/8 21/13.... ...

  3. 39. 求分数序列前N项和

    求分数序列前N项和 #include <stdio.h> int main() { int i, n; double numerator, denominator, item, sum, ...

  4. 20. 求阶乘序列前N项和

    求阶乘序列前N项和 #include <stdio.h> double fact(int n); int main() { int i, n; double item, sum; whil ...

  5. 19. 求平方根序列前N项和

    求平方根序列前N项和 #include <stdio.h> #include <math.h> int main() { int i, n; double item, sum; ...

  6. 12. 求简单交错序列前N项和

    求简单交错序列前N项和 #include <stdio.h> int main() { int denominator, flag, i, n; double item, sum; whi ...

  7. e8_4输出菲波拉契数列的前10项

    program fbnq;{输出菲波拉契数列的前10项} var a:..] of integer; i:integer; begin a[]:=; a[]:=; do a[i]:=a[i-]+a[i ...

  8. 练习2-15 求简单交错序列前N项和 (15 分)

    练习2-15 求简单交错序列前N项和 (15 分) 本题要求编写程序,计算序列 1 - 1/4 + 1/7 - 1/10 + ... 的前N项之和. 输入格式: 输入在一行中给出一个正整数N. 输出格 ...

  9. 递归函数练习:输出菲波拉契(Fibonacci)数列的前N项数据

    /*====================================================================== 著名的菲波拉契(Fibonacci)数列,其第一项为0 ...

  10. HDU_2011——求多项式的前n项和

    Problem Description 多项式的描述如下:1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...现在请你求出该多项式的前n项的和.   Input 输入数据由2行组 ...

随机推荐

  1. Python报错:performance hint: av/logging.pyx:232:5: the GIL to be acquired

    参考: https://stackoverflow.com/questions/77410272/problems-installing-python-av-in-windows-11 https:/ ...

  2. 【转载】 xavier,kaiming初始化中的fan_in,fan_out在卷积神经网络是什么意思

    原文地址: https://www.cnblogs.com/liuzhan709/p/10092679.html =========================================== ...

  3. Spring Boot 基于 SCRAM 认证集成 Kafka 的详解

    一.说明 在现代微服务架构中,Kafka 作为消息中间件被广泛使用,而安全性则是其中的一个关键因素.在本篇文章中,我们将探讨如何在 Spring Boot 应用中集成 Kafka 并使用 SCRAM ...

  4. docker 常用工具

    windows 下常常需要linux环境 直接安装虚拟机不方便也浪费资源 所以直接在docker下安装一个centos 然后搭建好开发环境就是个不错的办法 一.Linux 环境 1.安装centos ...

  5. AI阅读助手ChatDOC:基于 AI 与文档对话、重新定义阅读方式的AI文献阅读和文档处理工具

    让 AI 真正成为你的生产力超级助手 AI 时代降临,我们需要积极拥抱 AI 工具 在过去的 2 个多月里,以 ChatGPT 为代表的 AI 风靡全球.随着 GPT 模型的不断优化,ChatGPT ...

  6. 06-canvas填充图形颜色

    1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...

  7. 前端使用 Konva 实现可视化设计器(21)- 绘制图形(椭圆)

    本章开始补充一些基础的图形绘制,比如绘制:直线.曲线.圆/椭形.矩形.这一章主要分享一下本示例是如何开始绘制一个图形的,并以绘制圆/椭形为实现目标. 请大家动动小手,给我一个免费的 Star 吧~ 大 ...

  8. vscode使用说明

    # 要经常保存 # centos打开vscode方式 普通用户:[bw@localhost ~]$ /usr/share/code/bin/code 超级用户:[root@localhost shar ...

  9. Zabbix创建模板(templates)及监控项(item)

    Zabbix监控--Zabbix创建模板(templates)及监控项(item) 生产环境中,有一个简单的原则,那就是无监控不上线,监控系统开源方案中,zabbix也算不错的选择.由于其系统接口的开 ...

  10. 安装 Oh My Posh

    Oh My Posh Oh My Posh 官网 安装 winget install JanDeDobbeleer.OhMyPosh -s winget Oh My Posh 更新很快,有时会被杀毒软 ...