Update on 2024/6/25 10:40 (UTF+8) : Add the Part Five and correct some words

Hello, I'm glad to show you one of the feasible proof methods for the fllowing equation:

When n approaches positive infinity, then \({f_{n-1}\over f_{n}}={{\sqrt{5}-1}\over 2}\) ,which one we usually call it golden section.

Following, we define \(f_{i}\) as the \(i_{th}\) number of a Fibonacci sequence.

Part One: The General Formula of Fibonacci Sequence

As we all know,we defines Fibonacci sequence using \(f_{n}=f_{n-1}+f_{n-2}\)

And we also know, if we have a sequence satisfy that \(g_{i}=kg_{i-1}\), then its general formula is \(g_{i}=k^{i-1}g_{1}\)

So we transform the Fibonacci sequence into this form:

\[f_{n}-\lambda f_{n-1}=\mu (f_{n-1}-\lambda f_{n-2})\tag{0}
\]

Substitute \(f_{n}=f_{n-1}+f_{n-2}\) into this equation,we will get:

\[f_{n-1}+f_{n-2}-\lambda f_{n-1}=\mu f_{n-1}-\mu\lambda f_{n-2}
\]
\[(\mu +\lambda -1)f_{n-1}=(1+\mu\lambda)f_{n-2}
\]

Because \(f_{n-1}\neq f_{n-2}\) , so:

\[\begin{cases}\mu +\lambda -1=0\\1+\mu\lambda=0\end{cases}
\]

Solve the equation, we get the answer:

\[\begin{cases}
\lambda = \frac{1+\sqrt{5}}{2}\\
\mu = \frac{1-\sqrt{5}}{2}
\end{cases}\]

Or

\[\begin{cases}
\lambda = \frac{1-\sqrt{5}}{2}\\
\mu = \frac{1+\sqrt{5}}{2}
\end{cases}\]

Substitute it into equation \((0)\)

\[f_n-\frac{1+\sqrt{5}}{2}f_{n-1}=(\frac{1-\sqrt{5}}{2})^{n-2}(f_2-\frac{1+\sqrt{5}}{2}f_1)\tag{1}
\]

Or

\[f_n-\frac{1-\sqrt{5}}{2}f_{n-1}=(\frac{1+\sqrt{5}}{2})^{n-2}(f_2-\frac{1-\sqrt{5}}{2}f_1)\tag{2}
\]

Based on the proof just now, Both of these equations hold relative to the original equation, So we try to eliminate \(f_{n-1}\) ,then we finally get what we want:

\[f_{n}=\frac{1}{\sqrt{5}}[(\frac{\sqrt{5}+1}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]
\]

Part Two: The Relationship of \(f_{n}f_{n-2}\) and \(f_{n-1}^{2}\)

\[f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}
\]

To simplify our proof, we define that \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) ,then we have \(\frac{1}{\sqrt{5}}(P^{n}-Q^{n})\)

then we substitute the general formula to \(f_{n}f_{n-2}-f_{n-1}^{2}\) :

\[\frac{1}{\sqrt{5}\times\sqrt{5}}(P^{n}-Q^{n})(P^{n-2}-Q^{n-2})-\frac{1}{(\sqrt{5})^{2}}(P^{n-1}-Q^{n-1})^{2}
\]
\[\frac{1}{5}[P^{2n-2}+Q^{2n-2}-P^{n}Q^{n-2}-P^{n-2}Q^{n}-(P^{2n-2}+Q^{2n-2}-2P^{n-1}Q^{n-1})]
\]
\[\frac{1}{5}[-P^{n}Q^{n-2}-P^{n-2}Q^{n}+2P^{n-1}Q^{n-1}]
\]
\[-\frac{1}{5}[P^{n-1}Q^{n-1}(\frac{P}{Q}+\frac{Q}{P}-2)]
\]
\[-\frac{1}{5}[(PQ)^{n-1}(\frac{P}{Q}+\frac{Q}{P}-2)]
\]

Remember that we defined \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) , so \(PQ=-1,\frac{P}{Q}=-\frac{3+\sqrt{5}}{2},\frac{Q}{P}=-\frac{3-sqrt{5}}{2},\frac{P}{Q}+\frac{Q}{P}-2=-5\) , \(-5\times -\frac{1}{5}=1\) , then we get:

\[f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}
\]

Part Three: The Final Proof I

According to Part Two, \(f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}\), Transfer the term to this equation.

\[f_{n}f_{n-2}=(-1)^{n-1}+f_{n-1}^{2}
\]

Then we divide both sides of the equation by \(f_{n-1}f_{n-2}\) simultaneously.

\[\frac{f_{n}}{f_{n-1}}=\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}+\frac{f_{n-1}}{f_{n-2}}
\]

In our definition, \(n\) is approaching positive infinity, namely \(n\rightarrow +\infty\) , \(\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}\rightarrow 0\) , this item has a negligible impact on our answer, so we will omit it.

\[\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}
\]

Part Four: The Final Proof II

According to Part Three, we define k that \(\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k\) , notice that \(f_{i}=f_{n-1}+f_{n-2}\)

\[\frac{f_{n-1}+f_{n-2}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k
\]
\[1+\frac{f_{n-2}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k
\]
\[f_{n-1}f_{n-2}+f_{n-2}^{2}=f_{n-1}^{2}
\]

We define that \(f_{n-1}=kf_{n-2}\)

\[kf_{n-2}^{2}+f_{n-2}^{2}=k^{2}f_{n-2}^{2}
\]

divide both sides of the equation by $$f_{n-2}^{2}$$ simultaneously.

\[k+1=k^{2}
\]

Solve this equation, we finally get \(k=\frac{1+\sqrt{5}}{2}\)

Part Five: Promotion

Notice that we completely did not use a very important property of the Fibonacci sequence: \(f_{1}=f_{2}=1\)

Actually, for every sequence satisfy that \(f_{n}=f_{n-1}+f_{n-2}\) , not only the Fibonacci sequence , the above conclusions are all valid. Just because we are familiar with the Fibonacci sequence in our daily lives, we use it as an example to prove it.

By the way, have you ever tried that \(\frac{f_{1}}{f_{2}}=1,\frac{f_{2}}{f_{3}}=0.5,\frac{f_{3}}{f_{4}}=0.6667,\frac{f_{4}}{f_{5}}=0.6,\frac{f_{5}}{f_{6}}=0.625\) . We can observe that for adjacent \(n\) , one is always greater than \(0.618\) and the other is less than \(0.618\) . This indicates another pattern we have discovered.

That's all I have to say. Thank you for reading!

A Proof of Golden Section of Fibonacci Sequence的更多相关文章

  1. 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现

    最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...

  2. ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)

    1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...

  3. python实现斐波那契数列(Fibonacci sequence)

    使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...

  4. 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)

    先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...

  5. [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis

    For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...

  6. SQL Server ->> 斐波那契数列(Fibonacci sequence)

    斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...

  7. python3 求斐波那契数列(Fibonacci sequence)

    输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...

  8. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

  9. Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度

    Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...

  10. fibonacci number & fibonacci sequence

    fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...

随机推荐

  1. 关于elementUI的select组件回显问题

    最近接受了一个后台项目,需求是这样的,点击表单项,弹出的弹出层显示该表单项目的信息.但是回显的时候,关于弹出层中的级联显示有问题,如图: 回显结果为: 回显代码为: 弹框为: 我就不明白了,分明分公司 ...

  2. Docker 基于Dockerfile创建镜像实践

    需求描述 简单说,就是创建一个服务型的镜像,即运行基于该镜像创建的容器时,基于该容器自动开启一个服务.具体来说,是创建一个部署了nginx,uwsgi,python,django项目代码的镜像,运行基 ...

  3. RS485总线防雷保护方案(转)

    RS485作为最为最常用的电表通讯方式之一.日常生活中雷电和静电干扰已经成为485通信总线在实际工程经常遇到的问题.故如何对芯片以及总线进行有效的保护,是摆在每一个使用者面前的一个问题.在这里,我们主 ...

  4. RPC接口测试(六)RPC协议解析(重要!重要!重要!)

    RPC协议解析 RPC(Remote Procedure Call Protocol)远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.简言之,RPC使得程 ...

  5. 【Java】 Void 类型

    void 也算一个类型,而且是基本数据类型 和其它数据类型一样提供了对应的包装类Void 每个包装类都提供一个TYPE字节实例,返回对应的原型类实例 public static void main(S ...

  6. 【ElasticSearch】02 查询操作

    准备样本: Elasticsearch 提供了基于 JSON 提供完整的查询 DSL 来定义查询 查询条件还适用于删除操作   创建索引: # PUT http://127.0.0.1:9200/st ...

  7. 【Vue】05 Webpack

    Webpack是一个现代JS应用的静态模块打包的工具 学习Webpack需要我们安装NodeJS 配置CNPM & CRM 使用切换镜像的方式配置:[不建议] npm config set r ...

  8. TensorBoard标量图中的平滑曲线是如何做的平滑?—— tensorflow TensorBoard标量图中“平滑”参数背后的数学原理是什么?—— 指数移动平均(EMA)

    TensorFlow的tensorboard的平滑曲线的实现代码: 使用"指数移动平均"技术实现. 地址: https://github.com/tensorflow/tensor ...

  9. 深度学习框架Theano停止维护

    Theano停止开发的声明地址: https://groups.google.com/g/theano-users/c/7Poq8BZutbY/m/rNCIfvAEAwAJ 原文内容: Dear us ...

  10. 光刻机巨头ASML公布了其最新的品牌短片《站在巨人的肩膀上》

    光刻机巨头ASML公布了其最新的品牌短片<站在巨人的肩膀上>: 荷兰光刻机:ASML使用AI工具midjourney和runway制作宣传片 这个时长1分50秒短片的特别地方在于,它是完全 ...