A Proof of Golden Section of Fibonacci Sequence
Update on 2024/6/25 10:40 (UTF+8) : Add the Part Five and correct some words
Hello, I'm glad to show you one of the feasible proof methods for the fllowing equation:
When n approaches positive infinity, then \({f_{n-1}\over f_{n}}={{\sqrt{5}-1}\over 2}\) ,which one we usually call it golden section.
Following, we define \(f_{i}\) as the \(i_{th}\) number of a Fibonacci sequence.
Part One: The General Formula of Fibonacci Sequence
As we all know,we defines Fibonacci sequence using \(f_{n}=f_{n-1}+f_{n-2}\)
And we also know, if we have a sequence satisfy that \(g_{i}=kg_{i-1}\), then its general formula is \(g_{i}=k^{i-1}g_{1}\)
So we transform the Fibonacci sequence into this form:
\]
Substitute \(f_{n}=f_{n-1}+f_{n-2}\) into this equation,we will get:
\]
\]
Because \(f_{n-1}\neq f_{n-2}\) , so:
\]
Solve the equation, we get the answer:
\lambda = \frac{1+\sqrt{5}}{2}\\
\mu = \frac{1-\sqrt{5}}{2}
\end{cases}\]
Or
\lambda = \frac{1-\sqrt{5}}{2}\\
\mu = \frac{1+\sqrt{5}}{2}
\end{cases}\]
Substitute it into equation \((0)\)
\]
Or
\]
Based on the proof just now, Both of these equations hold relative to the original equation, So we try to eliminate \(f_{n-1}\) ,then we finally get what we want:
\]
Part Two: The Relationship of \(f_{n}f_{n-2}\) and \(f_{n-1}^{2}\)
\]
To simplify our proof, we define that \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) ,then we have \(\frac{1}{\sqrt{5}}(P^{n}-Q^{n})\)
then we substitute the general formula to \(f_{n}f_{n-2}-f_{n-1}^{2}\) :
\]
\]
\]
\]
\]
Remember that we defined \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) , so \(PQ=-1,\frac{P}{Q}=-\frac{3+\sqrt{5}}{2},\frac{Q}{P}=-\frac{3-sqrt{5}}{2},\frac{P}{Q}+\frac{Q}{P}-2=-5\) , \(-5\times -\frac{1}{5}=1\) , then we get:
\]
Part Three: The Final Proof I
According to Part Two, \(f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}\), Transfer the term to this equation.
\]
Then we divide both sides of the equation by \(f_{n-1}f_{n-2}\) simultaneously.
\]
In our definition, \(n\) is approaching positive infinity, namely \(n\rightarrow +\infty\) , \(\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}\rightarrow 0\) , this item has a negligible impact on our answer, so we will omit it.
\]
Part Four: The Final Proof II
According to Part Three, we define k that \(\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k\) , notice that \(f_{i}=f_{n-1}+f_{n-2}\)
\]
\]
\]
We define that \(f_{n-1}=kf_{n-2}\)
\]
divide both sides of the equation by $$f_{n-2}^{2}$$ simultaneously.
\]
Solve this equation, we finally get \(k=\frac{1+\sqrt{5}}{2}\)
Part Five: Promotion
Notice that we completely did not use a very important property of the Fibonacci sequence: \(f_{1}=f_{2}=1\)
Actually, for every sequence satisfy that \(f_{n}=f_{n-1}+f_{n-2}\) , not only the Fibonacci sequence , the above conclusions are all valid. Just because we are familiar with the Fibonacci sequence in our daily lives, we use it as an example to prove it.
By the way, have you ever tried that \(\frac{f_{1}}{f_{2}}=1,\frac{f_{2}}{f_{3}}=0.5,\frac{f_{3}}{f_{4}}=0.6667,\frac{f_{4}}{f_{5}}=0.6,\frac{f_{5}}{f_{6}}=0.625\) . We can observe that for adjacent \(n\) , one is always greater than \(0.618\) and the other is less than \(0.618\) . This indicates another pattern we have discovered.
That's all I have to say. Thank you for reading!
A Proof of Golden Section of Fibonacci Sequence的更多相关文章
- 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现
最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...
- ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)
1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...
- python实现斐波那契数列(Fibonacci sequence)
使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...
- 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)
先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...
- [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis
For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...
- SQL Server ->> 斐波那契数列(Fibonacci sequence)
斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...
- python3 求斐波那契数列(Fibonacci sequence)
输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...
- LeetCode 842. Split Array into Fibonacci Sequence
原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...
- Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度
Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...
- fibonacci number & fibonacci sequence
fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...
随机推荐
- Python在linux系统和window系统相对路径导致找不到文件报错
文件路径 project1 -dir1 --test1.py -dir2 --test2.text -main.py test1.py from pathlib import Path "& ...
- docker 容器卷
创建各种卷 [root@docker ~]# docker volume create mqy-vo101 mqy-vo101 [root@docker ~]# docker inspect mqy- ...
- MIT6.1810の学习笔记
webliuのmit.6.828学习笔记 写在前面 本文基于mit/6.828课程,附官方网址. 本文采用的实验环境为2020年版的xv6系统,需要wsl,vscode,docker工具.附环境配置教 ...
- linux终端如何加上时间,添加时间戳到终端提示?
方法: 在 .bashrc 文件中加入: export PROMPT_COMMAND="echo -n \[\$(date +%H:%M:%S)\\] " 这样便可以在每次输入命令 ...
- 几乎纯css实现弹出框
今天需要做一个弹出框,右下角提示的那种 ,看了一两个jquery的插件 总是不太满意 .一方面js内容太多,另一方面 不太好配合已经存在的样式使用.所以 就自己用css直接实现了下 效果还可以 . 上 ...
- css 样式 element.style 覆盖问题
问题: 我们在写网页定制样式的时候发现展示效果跟我们预想的不一样? 打开F12一看原来是element.style 覆盖的我定义的效果. 解决: 只要在定义的内容后面加上 !important 就行啦 ...
- Apache SeaTunnel 2.3.3 版本发布,CDC 支持 Schema Evolution!
时隔两个月, Apache SeaTunnel 终于迎来大版本更新.此次发布的 2.3.3 版本在功能和性能上均有较大优化改进,其中大家期待已久的 CDC Schema evolution(DDL 变 ...
- IntelliJ IDEA 2024.2 发布:Spring Data JPA即时查询、自动补全cron表达式
今早看到,IntelliJ IDEA 2024.2 发布的邮件提示,看了一眼这个版本更新的新特性真的太适合我了!也许这些能力对关注DD的小伙伴也有帮助,所以搞篇博客介绍和推荐一下.下面就来一起看看这个 ...
- 2024-08-14:用go语言,给定两个长度分别为n和m的整数数组nums和changeIndices,下标从1开始。初始时,nums 中所有下标均未标记。 从第1秒到第m秒,每秒可以选择以下四种操
2024-08-14:用go语言,给定两个长度分别为n和m的整数数组nums和changeIndices,下标从1开始.初始时,nums 中所有下标均未标记. 从第1秒到第m秒,每秒可以选择以下四种操 ...
- grpc断路器之sentinel
荐
背景 为了防止下游服务雪崩,这里考虑使用断路器 技术选型 由于是springboot服务且集成了istio,这里考虑三种方案 istio hystrix sentinel 这里分别有这几种方案的对比 ...