A Proof of Golden Section of Fibonacci Sequence
Update on 2024/6/25 10:40 (UTF+8) : Add the Part Five and correct some words
Hello, I'm glad to show you one of the feasible proof methods for the fllowing equation:
When n approaches positive infinity, then \({f_{n-1}\over f_{n}}={{\sqrt{5}-1}\over 2}\) ,which one we usually call it golden section.
Following, we define \(f_{i}\) as the \(i_{th}\) number of a Fibonacci sequence.
Part One: The General Formula of Fibonacci Sequence
As we all know,we defines Fibonacci sequence using \(f_{n}=f_{n-1}+f_{n-2}\)
And we also know, if we have a sequence satisfy that \(g_{i}=kg_{i-1}\), then its general formula is \(g_{i}=k^{i-1}g_{1}\)
So we transform the Fibonacci sequence into this form:
\]
Substitute \(f_{n}=f_{n-1}+f_{n-2}\) into this equation,we will get:
\]
\]
Because \(f_{n-1}\neq f_{n-2}\) , so:
\]
Solve the equation, we get the answer:
\lambda = \frac{1+\sqrt{5}}{2}\\
\mu = \frac{1-\sqrt{5}}{2}
\end{cases}\]
Or
\lambda = \frac{1-\sqrt{5}}{2}\\
\mu = \frac{1+\sqrt{5}}{2}
\end{cases}\]
Substitute it into equation \((0)\)
\]
Or
\]
Based on the proof just now, Both of these equations hold relative to the original equation, So we try to eliminate \(f_{n-1}\) ,then we finally get what we want:
\]
Part Two: The Relationship of \(f_{n}f_{n-2}\) and \(f_{n-1}^{2}\)
\]
To simplify our proof, we define that \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) ,then we have \(\frac{1}{\sqrt{5}}(P^{n}-Q^{n})\)
then we substitute the general formula to \(f_{n}f_{n-2}-f_{n-1}^{2}\) :
\]
\]
\]
\]
\]
Remember that we defined \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) , so \(PQ=-1,\frac{P}{Q}=-\frac{3+\sqrt{5}}{2},\frac{Q}{P}=-\frac{3-sqrt{5}}{2},\frac{P}{Q}+\frac{Q}{P}-2=-5\) , \(-5\times -\frac{1}{5}=1\) , then we get:
\]
Part Three: The Final Proof I
According to Part Two, \(f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}\), Transfer the term to this equation.
\]
Then we divide both sides of the equation by \(f_{n-1}f_{n-2}\) simultaneously.
\]
In our definition, \(n\) is approaching positive infinity, namely \(n\rightarrow +\infty\) , \(\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}\rightarrow 0\) , this item has a negligible impact on our answer, so we will omit it.
\]
Part Four: The Final Proof II
According to Part Three, we define k that \(\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k\) , notice that \(f_{i}=f_{n-1}+f_{n-2}\)
\]
\]
\]
We define that \(f_{n-1}=kf_{n-2}\)
\]
divide both sides of the equation by $$f_{n-2}^{2}$$ simultaneously.
\]
Solve this equation, we finally get \(k=\frac{1+\sqrt{5}}{2}\)
Part Five: Promotion
Notice that we completely did not use a very important property of the Fibonacci sequence: \(f_{1}=f_{2}=1\)
Actually, for every sequence satisfy that \(f_{n}=f_{n-1}+f_{n-2}\) , not only the Fibonacci sequence , the above conclusions are all valid. Just because we are familiar with the Fibonacci sequence in our daily lives, we use it as an example to prove it.
By the way, have you ever tried that \(\frac{f_{1}}{f_{2}}=1,\frac{f_{2}}{f_{3}}=0.5,\frac{f_{3}}{f_{4}}=0.6667,\frac{f_{4}}{f_{5}}=0.6,\frac{f_{5}}{f_{6}}=0.625\) . We can observe that for adjacent \(n\) , one is always greater than \(0.618\) and the other is less than \(0.618\) . This indicates another pattern we have discovered.
That's all I have to say. Thank you for reading!
A Proof of Golden Section of Fibonacci Sequence的更多相关文章
- 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现
最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...
- ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)
1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...
- python实现斐波那契数列(Fibonacci sequence)
使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...
- 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)
先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...
- [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis
For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...
- SQL Server ->> 斐波那契数列(Fibonacci sequence)
斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...
- python3 求斐波那契数列(Fibonacci sequence)
输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...
- LeetCode 842. Split Array into Fibonacci Sequence
原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...
- Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度
Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...
- fibonacci number & fibonacci sequence
fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...
随机推荐
- 靶机: Chronos
靶机: Chronos 准备 靶机:https://www.vulnhub.com/entry/chronos-1,735/ 使用 VirtualBox 网络 Host-Only 配置网络环境:htt ...
- MySQL之DQL
*****DQL -- 数据查询语言 查询不会修改数据库表记录! 一. 基本查询 1. 字段(列)控制 1) 查询所有列 SELECT * FROM 表名; SELECT * FROM emp ...
- Docker 基于Dockerfile创建镜像实践
需求描述 简单说,就是创建一个服务型的镜像,即运行基于该镜像创建的容器时,基于该容器自动开启一个服务.具体来说,是创建一个部署了nginx,uwsgi,python,django项目代码的镜像,运行基 ...
- 硬件开发笔记(二十八):TPS54331电源设计(一):5V电源供电原理图设计
前言 电源供电电路设计很重要,为了更好的给对硬件设计有需求的人,特意将电源设计的基础过程描述出来. 本篇描述设计常用的12V转5V电路3A. TPS54331(DC-DC稳压器) 概述 ...
- git 提交备注规范
git 提交规范commit message = subject + :+ 空格 + message 主体 例如:feat:增加用户注册功能 常见的 subject 种类以及含义如下: feat: 新 ...
- httpclient,轻量级idea集成测试工具
优点:不用新开一个网页,具有测试数据保存功能,不需要配置即用(对比swagger) 不会特别占内存(对比postman) 使用方法:idea中安装插件 controller方法中点击 选择对应 ...
- 如何在Linux云服务器上通过Docker Compose部署安装Halo,搭建个人博客网站?
目录 前置步骤 环境搭建 创建容器组 在系统任意位置创建一个文件夹 创建docker-compose.yaml 启动 Halo 服务 配置反向代理以及域名解析 Halo初始化页面. 更新新版本的hal ...
- 【JDBC】Extra03 PostgreSQL-JDBC
PostgreSQL的JDBC实现: <!-- https://mvnrepository.com/artifact/org.postgresql/postgresql --> <d ...
- 【Mybatis-Plus】05 条件构造器 ConditionConstructor
理解: 原来叫条件构造器,我一直以为都是封装条件对象 即SQL的查询条件,不过都一样. 其目的是因为的实际的需求灵活多变,而我们的SQL的筛选条件也需要跟着变化, 但是有一些固定的字段固定的方式可以保 ...
- python报错:pyglet.canvas.xlib.NoSuchDisplayException: Cannot connect to "None"
运行python代码报错: 问题发现: 问题其实十分的狗血,这个代码是在服务器上运行的,运行之前其实并没有看具体的代码情况,git clone 下载下来就直接运行了,原来这个代码需要进行图片绘制,说直 ...