Update on 2024/6/25 10:40 (UTF+8) : Add the Part Five and correct some words

Hello, I'm glad to show you one of the feasible proof methods for the fllowing equation:

When n approaches positive infinity, then \({f_{n-1}\over f_{n}}={{\sqrt{5}-1}\over 2}\) ,which one we usually call it golden section.

Following, we define \(f_{i}\) as the \(i_{th}\) number of a Fibonacci sequence.

Part One: The General Formula of Fibonacci Sequence

As we all know,we defines Fibonacci sequence using \(f_{n}=f_{n-1}+f_{n-2}\)

And we also know, if we have a sequence satisfy that \(g_{i}=kg_{i-1}\), then its general formula is \(g_{i}=k^{i-1}g_{1}\)

So we transform the Fibonacci sequence into this form:

\[f_{n}-\lambda f_{n-1}=\mu (f_{n-1}-\lambda f_{n-2})\tag{0}
\]

Substitute \(f_{n}=f_{n-1}+f_{n-2}\) into this equation,we will get:

\[f_{n-1}+f_{n-2}-\lambda f_{n-1}=\mu f_{n-1}-\mu\lambda f_{n-2}
\]
\[(\mu +\lambda -1)f_{n-1}=(1+\mu\lambda)f_{n-2}
\]

Because \(f_{n-1}\neq f_{n-2}\) , so:

\[\begin{cases}\mu +\lambda -1=0\\1+\mu\lambda=0\end{cases}
\]

Solve the equation, we get the answer:

\[\begin{cases}
\lambda = \frac{1+\sqrt{5}}{2}\\
\mu = \frac{1-\sqrt{5}}{2}
\end{cases}\]

Or

\[\begin{cases}
\lambda = \frac{1-\sqrt{5}}{2}\\
\mu = \frac{1+\sqrt{5}}{2}
\end{cases}\]

Substitute it into equation \((0)\)

\[f_n-\frac{1+\sqrt{5}}{2}f_{n-1}=(\frac{1-\sqrt{5}}{2})^{n-2}(f_2-\frac{1+\sqrt{5}}{2}f_1)\tag{1}
\]

Or

\[f_n-\frac{1-\sqrt{5}}{2}f_{n-1}=(\frac{1+\sqrt{5}}{2})^{n-2}(f_2-\frac{1-\sqrt{5}}{2}f_1)\tag{2}
\]

Based on the proof just now, Both of these equations hold relative to the original equation, So we try to eliminate \(f_{n-1}\) ,then we finally get what we want:

\[f_{n}=\frac{1}{\sqrt{5}}[(\frac{\sqrt{5}+1}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]
\]

Part Two: The Relationship of \(f_{n}f_{n-2}\) and \(f_{n-1}^{2}\)

\[f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}
\]

To simplify our proof, we define that \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) ,then we have \(\frac{1}{\sqrt{5}}(P^{n}-Q^{n})\)

then we substitute the general formula to \(f_{n}f_{n-2}-f_{n-1}^{2}\) :

\[\frac{1}{\sqrt{5}\times\sqrt{5}}(P^{n}-Q^{n})(P^{n-2}-Q^{n-2})-\frac{1}{(\sqrt{5})^{2}}(P^{n-1}-Q^{n-1})^{2}
\]
\[\frac{1}{5}[P^{2n-2}+Q^{2n-2}-P^{n}Q^{n-2}-P^{n-2}Q^{n}-(P^{2n-2}+Q^{2n-2}-2P^{n-1}Q^{n-1})]
\]
\[\frac{1}{5}[-P^{n}Q^{n-2}-P^{n-2}Q^{n}+2P^{n-1}Q^{n-1}]
\]
\[-\frac{1}{5}[P^{n-1}Q^{n-1}(\frac{P}{Q}+\frac{Q}{P}-2)]
\]
\[-\frac{1}{5}[(PQ)^{n-1}(\frac{P}{Q}+\frac{Q}{P}-2)]
\]

Remember that we defined \(P=\frac{\sqrt{5}+1}{2},Q=\frac{1-\sqrt{5}}{2}\) , so \(PQ=-1,\frac{P}{Q}=-\frac{3+\sqrt{5}}{2},\frac{Q}{P}=-\frac{3-sqrt{5}}{2},\frac{P}{Q}+\frac{Q}{P}-2=-5\) , \(-5\times -\frac{1}{5}=1\) , then we get:

\[f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}
\]

Part Three: The Final Proof I

According to Part Two, \(f_{n}f_{n-2}-f_{n-1}^{2}=(-1)^{n-1}\), Transfer the term to this equation.

\[f_{n}f_{n-2}=(-1)^{n-1}+f_{n-1}^{2}
\]

Then we divide both sides of the equation by \(f_{n-1}f_{n-2}\) simultaneously.

\[\frac{f_{n}}{f_{n-1}}=\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}+\frac{f_{n-1}}{f_{n-2}}
\]

In our definition, \(n\) is approaching positive infinity, namely \(n\rightarrow +\infty\) , \(\frac{(-1)^{n-1}}{f_{n-1}f_{n-2}}\rightarrow 0\) , this item has a negligible impact on our answer, so we will omit it.

\[\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}
\]

Part Four: The Final Proof II

According to Part Three, we define k that \(\frac{f_{n}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k\) , notice that \(f_{i}=f_{n-1}+f_{n-2}\)

\[\frac{f_{n-1}+f_{n-2}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k
\]
\[1+\frac{f_{n-2}}{f_{n-1}}=\frac{f_{n-1}}{f_{n-2}}=k
\]
\[f_{n-1}f_{n-2}+f_{n-2}^{2}=f_{n-1}^{2}
\]

We define that \(f_{n-1}=kf_{n-2}\)

\[kf_{n-2}^{2}+f_{n-2}^{2}=k^{2}f_{n-2}^{2}
\]

divide both sides of the equation by $$f_{n-2}^{2}$$ simultaneously.

\[k+1=k^{2}
\]

Solve this equation, we finally get \(k=\frac{1+\sqrt{5}}{2}\)

Part Five: Promotion

Notice that we completely did not use a very important property of the Fibonacci sequence: \(f_{1}=f_{2}=1\)

Actually, for every sequence satisfy that \(f_{n}=f_{n-1}+f_{n-2}\) , not only the Fibonacci sequence , the above conclusions are all valid. Just because we are familiar with the Fibonacci sequence in our daily lives, we use it as an example to prove it.

By the way, have you ever tried that \(\frac{f_{1}}{f_{2}}=1,\frac{f_{2}}{f_{3}}=0.5,\frac{f_{3}}{f_{4}}=0.6667,\frac{f_{4}}{f_{5}}=0.6,\frac{f_{5}}{f_{6}}=0.625\) . We can observe that for adjacent \(n\) , one is always greater than \(0.618\) and the other is less than \(0.618\) . This indicates another pattern we have discovered.

That's all I have to say. Thank you for reading!

A Proof of Golden Section of Fibonacci Sequence的更多相关文章

  1. 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现

    最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...

  2. ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)

    1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...

  3. python实现斐波那契数列(Fibonacci sequence)

    使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...

  4. 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)

    先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...

  5. [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis

    For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...

  6. SQL Server ->> 斐波那契数列(Fibonacci sequence)

    斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...

  7. python3 求斐波那契数列(Fibonacci sequence)

    输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...

  8. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

  9. Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度

    Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...

  10. fibonacci number & fibonacci sequence

    fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...

随机推荐

  1. 手写数字识别-使用TensorFlow构建和训练一个简单的神经网络

    下面是一个具体的Python代码示例,展示如何使用TensorFlow实现一个简单的神经网络来解决手写数字识别问题(使用MNIST数据集).以下是一个完整的Python代码示例,展示如何使用Tenso ...

  2. odoo 给form表单视图内联列表添加按钮

    实践环境 Odoo 14.0-20221212 (Community Edition) 代码实现 模块文件组织结构 说明:为了更好的表达本文主题,一些和主题无关的文件.代码已略去 odoo14\cus ...

  3. ffmpeg中声音解码的流程

    声音解码流程: audio初始化 fifo初始化frame初始化init_resampler 解码: 如果有帧 初始化转码空间 做转码操作 resampler 放入fifo fifo是否大于 一帧数据 ...

  4. 【DataBase】MySQL 03 基本命令 & 语法规范

    参考至视频:P12 - P15 https://www.bilibili.com/video/BV1xW411u7ax?p=82 SHOW 和相关的基本命令 查看所有的数据库 SHOW DATABAS ...

  5. python3解析wav文件获取dtmf值

    操作系统 :Windows 10_x64 Python版本:3.9.2 从事FreeSwitch相关工作,大概率会遇得到DTMF,DTMF的传递方式有三种: In-band RFC2833 SIP-I ...

  6. JavaWeb入门到实战学习笔记

    了解,讲得并不是很好,很展开. 概念 动态web Web服务器 web服务器这节也是蜻蜓点水,引出tomcat而已 ASP(C#语言,微软) JSP PHP Java bootstrapclasslo ...

  7. 如何在多台Linux系统主机上实现ssh免密访问——成公钥文件id_rsa.pub(数字签名RSA)

    假设共有三台Linux主机,为matser,slave1,slave2,现在要实现master主机可以ssh免密访问master主机自身以及slave1.slave2. 原理: 主机调用秘钥生成命令, ...

  8. 【转载】 在Ubuntu环境下,搜狗输入法乱码问题的解决

    原文作者:高坦的博客 | Tan's Blog 原文链接:https://www.cnblogs.com/gtscool/p/12234104.html本文采用 BY-NC-SA 许可协议.转载请注明 ...

  9. EDI企业订单报文系统——冷链物流管理系统——低代码的应用

    参考: 驳"低代码开发取代程序员"论 为什么专业开发者也需要低代码? =========================================== 推荐视频: https ...

  10. Windows使用命令行终止任务

    在Windows操作系统中,可以使用命令提示符(cmd)或Windows PowerShell来查看运行的任务并终止指定的任务.以下是一些常用的命令: 使用命令提示符(cmd) 查看运行的任务: 打开 ...