poj 1390 Blocks
poj 1390 Blocks
题意
一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数。问怎么消能使分数最大。。
题解
此题在徐源盛《对一类动态规划问题的研究》以及刘汝佳的黑书《算法艺术与信息学竞赛》中都有提及。
首先我们要将相同颜色块进行合并。定义状态\(dp[i][j][k]\)表示第\(i\)到第\(j\)个颜色块后面接了\(k\)个颜色为\(color[j]\)的砖块。
不难得出转移方程为\(dp[i][j][k]=max \{ dp[i][j-1][0]+(len[j]+k)^2, dp[i][p][k+len[j]] + dp[p+1][j][0] \}\)
我们可以记录一下上一次\(color[j]\)出现的位置,就可以在\(O(n^3)\)内完成问题。
此题我写的是递推,不过记忆化似乎更快
递推
#include <cstdio>
#include <cstring>
const int N = 205;
int dp[N][N][N], color[N], len[N], pre[N], pos[N];
inline void SelfMax(int &a, const int &b) { if (a < b) a = b; }
inline int p2(const int &a) { return a * a; }
int main() {
int n, pr, i, j, k, T, tot, a, Sizdp = sizeof dp, length, Case = 0;
scanf("%d", &T);
while (T--) {
n = 0; pr = -1; scanf("%d", &tot);
for (k = 1; k <= tot; ++k) {
scanf("%d", &a);
if (a != pr) color[++n] = pr = a, len[n] = 1;
else ++len[n];
}
memset(dp, 0, Sizdp); memset(pos, 0, sizeof pos);
for (i = 1; i <= n; ++i) pre[i] = pos[color[i]], pos[color[i]] = i;
for (length = 1; length <= n; ++length)
for (i = 1;; ++i) {
if ((j = i + length - 1) > n) break;
for (k = 0; k <= tot; ++k) {
dp[i][j][k] = dp[i][j-1][0] + p2(len[j] + k);
for (a = pre[j]; a >= i; a = pre[a])
SelfMax(dp[i][j][k], dp[i][a][k+len[j]] + dp[a+1][j-1][0]);
}
}
printf("Case %d: %d\n", ++Case, dp[1][n][0]);
}
return 0;
}
记忆化
#include <cstdio>
#include <cstring>
const int N = 205;
int dp[N][N][N], color[N], len[N], pre[N], pos[N], Sum[N];
inline void SelfMax(int &a, const int &b) { if (a < b) a = b; }
inline int p2(const int &a) { return a * a; }
int f(int i, int j, int k) {
if (~dp[i][j][k]) return dp[i][j][k];
if (i > j) return 0;
int &ret = dp[i][j][k];
ret = f(i, j-1, 0) + p2(k + len[j]);
for (int p = pre[j]; p >= i; p = pre[p]) SelfMax(ret, f(i, p, k + len[j]) + f(p+1, j - 1, 0));
return ret;
}
int main() {
int n, pr, i, j, k, T, tot, a, Sizdp = sizeof dp, length, Case = 0;
scanf("%d", &T);
while (T--) {
n = 0; pr = -1; scanf("%d",&tot);
for (k = 1; k <= tot; ++k) {
scanf("%d", &a);
if (a ^ pr) color[++n] = pr = a, len[n] = 1;
else ++len[n];
}
memset(dp, -1, Sizdp); memset(pos, 0, sizeof pos);
for (i = 1; i <= n; ++i) pre[i] = pos[color[i]], pos[color[i]] = i;
printf("Case %d: %d\n", ++Case, f(1, n, 0));
}
return 0;
}
poj 1390 Blocks的更多相关文章
- POJ 1390 Blocks(记忆化搜索+dp)
POJ 1390 Blocks 砌块 时限:5000 MS 内存限制:65536K 提交材料共计: 6204 接受: 2563 描述 你们中的一些人可能玩过一个叫做“积木”的游戏.一行有n个块 ...
- poj 1390 Blocks (经典区间dp 方块消除)
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4250 Accepted: 1704 Descriptio ...
- POJ 1390 Blocks(区间DP)
Blocks [题目链接]Blocks [题目类型]区间DP &题意: 给定n个不同颜色的盒子,连续的相同颜色的k个盒子可以拿走,权值为k*k,求把所有盒子拿完的最大权值 &题解: 这 ...
- poj 1390 Blocks (记忆化搜索)
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4318 Accepted: 1745 Descriptio ...
- POJ 1390 Blocks(DP + 思维)题解
题意:有一排颜色的球,每次选择一个球消去,那么这个球所在的同颜色的整段都消去(和消消乐同理),若消去k个,那么得分k*k,问你消完所有球最大得分 思路:显然这里我们直接用二位数组设区间DP行不通,我们 ...
- POJ 1390 Blocks (区间DP) 题解
题意 t组数据,每组数据有n个方块,给出它们的颜色,每次消去的得分为相同颜色块个数的平方(要求连续),求最大得分. 首先看到这题我们发现我们要把大块尽可能放在一起才会有最大收益,我们要将相同颜色块合在 ...
- 【POJ 1390】Blocks
http://poj.org/problem?id=1390 黑书上的例题,感觉我这辈子是想不到这样的dp了QAQ \(f(i,j,k)\)表示将\(i\)到\(j\)合并,并且假设未来会有\(k\) ...
- Blocks POJ - 1390 多维dp
题意:有一排box,各有不同的颜色.你可以通过点击某个box使得与其相邻的同色box全部消掉,然后你可以得到的分数为消去长度的平方,问怎样得到最高分? 题解:考虑用一维dp,/*dp[i]为1~i个b ...
- [POJ 3734] Blocks (矩阵高速幂、组合数学)
Blocks Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3997 Accepted: 1775 Descriptio ...
随机推荐
- 分布式架构中一致性解决方案——Zookeeper集群搭建
当我们的项目在不知不觉中做大了之后,各种问题就出来了,真jb头疼,比如性能,业务系统的并行计算的一致性协调问题,比如分布式架构的事务问题, 我们需要多台机器共同commit事务,经典的案例当然是银行转 ...
- CentOS7 虚拟机搭建、初始设置、简单使用
注:虚拟机安装的系统是CentOS7 1.网络设置 网络的设置主要是为了让虚拟机和物理机能够相互ping通,这样就可以用XShell之类的工具操控,也可以上网 见另一篇 CentOS7网络配置 2.物 ...
- SQL Server 2008 R2——使用计算列为表创建自定义的自增列
=================================版权声明================================= 版权声明:原创文章 谢绝转载 请通过右侧公告中的“联系邮 ...
- mysql启动失败:不能创建pid文件
2016-03-09T07:51:38.905444Z 0 [ERROR] /usr/sbin/mysqld: Can't create/write to file '/var/run/mysqld/ ...
- YARN DistributedShell源码分析与修改
YARN DistributedShell源码分析与修改 YARN版本:2.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述 2 YARN Distrib ...
- WPF DEV控件-ChartControl用法
WPF常用的第三方控件集,DevExpress 下面介绍如何生成Chart界面: <dxc:ChartControl AnimationMode="OnDataChanged" ...
- ipv4理论知识3-分类编址之两级编址
两级编制 分类编址时,同一网络中的所有地址都属于统一个地址块,而每个地址块包含两部分:网络标识和主机标识.网络标识指明了网络,主机标识则指明了连接到该网络的一台特定的主机.如下图描绘了分类编址中一个I ...
- openstack 命令行管理 - 目录
原文http://blog.csdn.net/signmem/article/details/19513775 相关 openstack 命令行管理, 分下面部分进行介绍 openstack 命令行 ...
- 【转】What is an SDET
What is an SDET? SDET stands for Software Development Engineer in Test (or Software Design Engineer ...
- delphi WebBrowser控件上网页验证码图片识别教程(一)
步骤一:获取网页中验证码图片的url地址 在delphi中加入一个BitBtn和一个memo以及WebBrowser控件实现网页中验证码图片的url地址的获取 程序如下:procedure TForm ...