poj 1390 Blocks

题意

一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数。问怎么消能使分数最大。。

题解

此题在徐源盛《对一类动态规划问题的研究》以及刘汝佳的黑书《算法艺术与信息学竞赛》中都有提及。

首先我们要将相同颜色块进行合并。定义状态\(dp[i][j][k]\)表示第\(i\)到第\(j\)个颜色块后面接了\(k\)个颜色为\(color[j]\)的砖块。

不难得出转移方程为\(dp[i][j][k]=max \{ dp[i][j-1][0]+(len[j]+k)^2, dp[i][p][k+len[j]] + dp[p+1][j][0] \}\)

我们可以记录一下上一次\(color[j]\)出现的位置,就可以在\(O(n^3)\)内完成问题。

此题我写的是递推,不过记忆化似乎更快

递推

#include <cstdio>
#include <cstring> const int N = 205;
int dp[N][N][N], color[N], len[N], pre[N], pos[N];
inline void SelfMax(int &a, const int &b) { if (a < b) a = b; }
inline int p2(const int &a) { return a * a; }
int main() {
int n, pr, i, j, k, T, tot, a, Sizdp = sizeof dp, length, Case = 0;
scanf("%d", &T);
while (T--) {
n = 0; pr = -1; scanf("%d", &tot);
for (k = 1; k <= tot; ++k) {
scanf("%d", &a);
if (a != pr) color[++n] = pr = a, len[n] = 1;
else ++len[n];
} memset(dp, 0, Sizdp); memset(pos, 0, sizeof pos);
for (i = 1; i <= n; ++i) pre[i] = pos[color[i]], pos[color[i]] = i;
for (length = 1; length <= n; ++length)
for (i = 1;; ++i) {
if ((j = i + length - 1) > n) break;
for (k = 0; k <= tot; ++k) {
dp[i][j][k] = dp[i][j-1][0] + p2(len[j] + k);
for (a = pre[j]; a >= i; a = pre[a])
SelfMax(dp[i][j][k], dp[i][a][k+len[j]] + dp[a+1][j-1][0]);
}
}
printf("Case %d: %d\n", ++Case, dp[1][n][0]);
}
return 0;
}

记忆化

#include <cstdio>
#include <cstring> const int N = 205;
int dp[N][N][N], color[N], len[N], pre[N], pos[N], Sum[N]; inline void SelfMax(int &a, const int &b) { if (a < b) a = b; }
inline int p2(const int &a) { return a * a; } int f(int i, int j, int k) {
if (~dp[i][j][k]) return dp[i][j][k];
if (i > j) return 0;
int &ret = dp[i][j][k];
ret = f(i, j-1, 0) + p2(k + len[j]);
for (int p = pre[j]; p >= i; p = pre[p]) SelfMax(ret, f(i, p, k + len[j]) + f(p+1, j - 1, 0));
return ret;
}
int main() {
int n, pr, i, j, k, T, tot, a, Sizdp = sizeof dp, length, Case = 0;
scanf("%d", &T);
while (T--) {
n = 0; pr = -1; scanf("%d",&tot);
for (k = 1; k <= tot; ++k) {
scanf("%d", &a);
if (a ^ pr) color[++n] = pr = a, len[n] = 1;
else ++len[n];
} memset(dp, -1, Sizdp); memset(pos, 0, sizeof pos);
for (i = 1; i <= n; ++i) pre[i] = pos[color[i]], pos[color[i]] = i;
printf("Case %d: %d\n", ++Case, f(1, n, 0));
}
return 0;
}

poj 1390 Blocks的更多相关文章

  1. POJ 1390 Blocks(记忆化搜索+dp)

    POJ 1390 Blocks 砌块 时限:5000 MS   内存限制:65536K 提交材料共计: 6204   接受: 2563 描述 你们中的一些人可能玩过一个叫做“积木”的游戏.一行有n个块 ...

  2. poj 1390 Blocks (经典区间dp 方块消除)

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4250   Accepted: 1704 Descriptio ...

  3. POJ 1390 Blocks(区间DP)

    Blocks [题目链接]Blocks [题目类型]区间DP &题意: 给定n个不同颜色的盒子,连续的相同颜色的k个盒子可以拿走,权值为k*k,求把所有盒子拿完的最大权值 &题解: 这 ...

  4. poj 1390 Blocks (记忆化搜索)

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4318   Accepted: 1745 Descriptio ...

  5. POJ 1390 Blocks(DP + 思维)题解

    题意:有一排颜色的球,每次选择一个球消去,那么这个球所在的同颜色的整段都消去(和消消乐同理),若消去k个,那么得分k*k,问你消完所有球最大得分 思路:显然这里我们直接用二位数组设区间DP行不通,我们 ...

  6. POJ 1390 Blocks (区间DP) 题解

    题意 t组数据,每组数据有n个方块,给出它们的颜色,每次消去的得分为相同颜色块个数的平方(要求连续),求最大得分. 首先看到这题我们发现我们要把大块尽可能放在一起才会有最大收益,我们要将相同颜色块合在 ...

  7. 【POJ 1390】Blocks

    http://poj.org/problem?id=1390 黑书上的例题,感觉我这辈子是想不到这样的dp了QAQ \(f(i,j,k)\)表示将\(i\)到\(j\)合并,并且假设未来会有\(k\) ...

  8. Blocks POJ - 1390 多维dp

    题意:有一排box,各有不同的颜色.你可以通过点击某个box使得与其相邻的同色box全部消掉,然后你可以得到的分数为消去长度的平方,问怎样得到最高分? 题解:考虑用一维dp,/*dp[i]为1~i个b ...

  9. [POJ 3734] Blocks (矩阵高速幂、组合数学)

    Blocks Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3997   Accepted: 1775 Descriptio ...

随机推荐

  1. TNS-12540: TNS:internal limit restriction exceeded

    应用程序以及客户端工具(Toad.PL/SQL Developer等)出现突然连接不上数据库服务器的情况,监听日志listener.log里面出现了TSN-12518与TSN-12540错误,如下所示 ...

  2. SQL Server 中VARCHAR(MAX)变量赋值引起的性能问题。

    案例环境: 操作系统版本 : Windows Server 2008 R2 Standard  SP1 数据库版本   :  Microsoft SQL Server 2012 (SP1) - 11. ...

  3. YourSQLDba设置共享路径备份

    YourSQLDba可以将数据库备份到网络路径(共享路径),这个也是非常灵活的一个功能,以前一直没有使用过这个功能,最近由于一个需求,于是我测试了一下YourSQLDba备份到网络路径,中间遇到了一些 ...

  4. 分布式搜索引擎Elasticsearch的查询与过滤

    一.写入 先来一个简单的官方例子,插入的参数为-XPUT,插入一条记录. curl -XPUT 'http://localhost:9200/test/users/1' -d '{ "use ...

  5. linux c++编译问题和虚拟机网络通信

    1.gcc main.cpp -lstdc++ -o test5 2. service network stop service NetworkManager restart

  6. [Java入门笔记] Java语言基础(二):常量、变量与数据类型

    常量与变量 什么是常量和变量 常量与变量都是程序在运行时用来存储数据一块内存空间 常量: 常量的值在程序运行时不能被改变,Java中声明常量必须使用final关键字.常量还可以分为两种意思: 第1种意 ...

  7. python基础(七)函数

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 函数最重要的目的是方便我们重复使用相同的一段程序. 将一些操作隶属于一个函数,以后 ...

  8. Libevent的IO复用技术和定时事件原理

    Libevent 是一个用C语言编写的.轻量级的开源高性能网络库,主要有以下几个亮点:事件驱动( event-driven),高性能;轻量级,专注于网络,不如 ACE 那么臃肿庞大:源代码相当精炼.易 ...

  9. [No00007D]2016-面经[上]

    面试常见问题: 题一:"请你自我介绍一下" 思路:1.这是面试的必考题目.2.介绍内容要与个人简历相一致.3.表述方式上尽量口语化.4.要切中要害,不谈无关.无用的内容.5.条理要 ...

  10. Linux下部署docker记录(1)-Volume使用

    之前部署了Linux下部署docker记录(0)-基础环境安装,接下来看看Docker Volume的使用. Docker volume使用1)一个数据卷是一个特别指定的目录,该目录利用容器的UFS文 ...