CodeForces 1367F1 Flying Sort (Easy Version)
题意
给一个长度为\(n\)的数组,数组中的数互不相同,你可以有两种操作
- 将某一个数放置在数组开头
- 将某一个数放置在数组结尾
问最小操作多少次可以得到一个递增数列
分析
因为数组中的数很大,我们可以将其离散化然后操作,这样我们可以得到一个长度为\(n\)的排列,目的是得到一个从\(1\)到\(n\)的顺序排列
每个数最多操作一次,否则第一次可以不操作,那么我们就要找最多的不需要操作的数,如果不需要操作,则元素的位置不变,如果有这么一组不需要操作的数,我们可以发现,中间的数字是不能插进去的,所以这组数是相邻的数,那么问题就转换为找到数组内最长的相差为\(1\)的子序列,考虑用\(DP\),\(dp[i]\)表示以数字\(i\)为结尾的最长子序列长度,则转移方程为
\]
如果\(a[i]-1\)出现了,则这个数是\(a[i]-1\)的后缀,否则这个数是开头,即为\(1\)
#pragma GCC optimize(3, "Ofast", "inline")
#include <bits/stdc++.h>
#define start ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ll long long
//#define int ll
#define ls st<<1
#define rs st<<1|1
#define pii pair<int,int>
#define rep(z, x, y) for(int z=x;z<=y;++z)
#define com bool operator<(const node &b)
using namespace std;
mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count());
const int maxn = (ll) 3e3 + 5;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
int T = 1;
int a[maxn], b[maxn];
int dp[maxn];
void solve() {
int n;
cin >> n;
map<int, int> mp;
rep(i, 1, n)cin >> a[i], b[i] = a[i], mp[a[i]] = i, dp[i] = 0;
sort(b + 1, b + n + 1);
rep(i, 1, n)a[mp[b[i]]] = i;
int maxx = 1;
rep(i, 1, n) {
dp[a[i]] = dp[a[i] - 1] + 1;
maxx = max(maxx, dp[a[i]]);
}
cout << n - maxx << '\n';
}
signed main() {
start;
cin >> T;
while (T--)
solve();
return 0;
}
CodeForces 1367F1 Flying Sort (Easy Version)的更多相关文章
- Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)
题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...
- codeforces Equalizing by Division (easy version)
output standard output The only difference between easy and hard versions is the number of elements ...
- Codeforces 1118F1 Tree Cutting (Easy Version) (简单树形DP)
<题目链接> 题目大意: 给定一棵树,树上的点有0,1,2三中情况,0代表该点无色.现在需要你将这棵树割掉一些边,使得割掉每条边分割成的两部分均最多只含有一种颜色的点,即分割后的两部分不能 ...
- Codeforces 1296E1 - String Coloring (easy version)
题目大意: 给定一段长度为n的字符串s 你需要给每个字符进行涂色,然后相邻的不同色的字符可以进行交换 需要保证涂色后能通过相邻交换把这个字符串按照字典序排序(a~z) 你只有两种颜色可以用来涂 问是否 ...
- Codeforces Round #540 (Div. 3) D1. Coffee and Coursework (Easy version) 【贪心】
任意门:http://codeforces.com/contest/1118/problem/D1 D1. Coffee and Coursework (Easy version) time limi ...
- Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】
任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...
- Codeforces Round #521 (Div. 3) F1. Pictures with Kittens (easy version)
F1. Pictures with Kittens (easy version) 题目链接:https://codeforces.com/contest/1077/problem/F1 题意: 给出n ...
- Codeforces 1077F1 Pictures with Kittens (easy version)(DP)
题目链接:Pictures with Kittens (easy version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:$dp[i][j ...
- Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version) 水题
B1. Character Swap (Easy Version) This problem is different from the hard version. In this version U ...
- Codeforces Round #575 (Div. 3) D1+D2. RGB Substring (easy version) D2. RGB Substring (hard version) (思维,枚举,前缀和)
D1. RGB Substring (easy version) time limit per test2 seconds memory limit per test256 megabytes inp ...
随机推荐
- MyBatis 在大数据量下使用流式查询进行数据同步
通常的数据同步中,如果数据量比较少的话可以直接全量同步,默认情况下,完整的检索结果集会将其存储在内存中.在大多数情况下,这是最有效的操作方式,并且由于 MySQL 网络协议的设计,因此更易于实现.但是 ...
- 非极大值抑制(NMS)算法详解
NMS(non maximum suppression)即非极大值抑制,广泛应用于传统的特征提取和深度学习的目标检测算法中. NMS原理是通过筛选出局部极大值得到最优解. 在2维边缘提取中体现在提取边 ...
- RabbitMQ系列-Exchange介绍
RabbitMQ系列 RabbitMQ系列-概念及安装 1. Exchange RabbitMQ系列-概念及安装提到AMQP 0-9-1协议默认支持四种exchange,分别是Direct Excha ...
- k8s实战案例之部署Nginx+Tomcat+NFS实现动静分离
1.基于镜像分层构建及自定义镜像运行Nginx及Java服务并基于NFS实现动静分离 1.1.业务镜像设计规划 根据业务的不同,我们可以导入官方基础镜像,在官方基础镜像的基础上自定义需要用的工具和环境 ...
- CSS 图片加载提前占位 padding-top、padding-bottom
今天聊一个图片加载提前占位的一个问题 ,内容比较适合初学者. 起因 在响应式页面当中,图片加载之前是不知道图片高度的,加载成功图片完全撑开.如果不做提前占位会把下面的内容挤下去,页面出现抖动,就像下面 ...
- vue中的数据代理
原理:通过vm对象来代理 Vue 中我们自己定义在data中的数据,首先: 我们自己定义的data中的对象或者属性 都会存储到vm中的_data 中进行数据劫持其次: 通过Object.defineP ...
- 深入了解ApacheZeppelin:如何构建高效的数据科学平台
目录 引言 随着数据科学和人工智能的快速发展,如何构建高效的数据科学平台已经成为一个重要议题.Apache Zeppelin是一个开源的数据科学平台,其提供了一种简单.高效的方式来处理和存储数据,并且 ...
- GPT3的性能评估:比较不同语言、文本和任务的差异
目录 GPT-3 性能评估:比较不同语言.文本和任务的差异 近年来,自然语言处理 (NLP) 和人工智能领域取得了巨大的进展,其中 GPT-3 是目前最为先进的语言模型之一.GPT-3 拥有超过 17 ...
- Python运维开发之路《模块》
一.模块 1. 模块初识 模块定义:模块(module),通常也被称为库(lib,library),是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被别的程序引入,以使用该模块中 ...
- PostgreSQL 12 文档: 部分 VII. 内部
部分 VII. 内部 这一部分包含PostgreSQL开发者可能用到的各类信息. 目录 50. PostgreSQL内部概述 50.1. 一个查询的路径 50.2. 连接如何建立 50.3. 分析器阶 ...