PaddleNLP--UIE(二)--小样本快速提升性能(含doccona标注)
相关文章:
1.快递单中抽取关键信息【一】----基于BiGRU+CR+预训练的词向量优化
2.快递单信息抽取【二】基于ERNIE1.0至ErnieGram + CRF预训练模型
3.快递单信息抽取【三】–五条标注数据提高准确率,仅需五条标注样本,快速完成快递单信息任务
1)PaddleNLP通用信息抽取技术UIE【一】产业应用实例:信息抽取{实体关系抽取、中文分词、精准实体标。情感分析等}、文本纠错、问答系统、闲聊机器人、定制训练
2)PaddleNLP–UIE(二)–小样本快速提升性能(含doccona标注)
!强烈推荐:数据标注平台doccano----简介、安装、使用、踩坑记录
本项目链接:
https://aistudio.baidu.com/aistudio/projectdetail/4160689?contributionType=1
项目主页:
https://aistudio.baidu.com/aistudio/usercenter
0.信息抽取定义以及难点
自动从无结构或半结构的文本中抽取出结构化信息的任务, 主要包含的任务包含了实体识别、关系抽取、事件抽取、情感分析、评论抽取等任务; 同时信息抽取涉及的领域非常广泛,信息抽取的技术需求高,下面具体展现一些示例
- 需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。
- 定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。
- 训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。
针对以上难题,中科院软件所和百度共同提出了一个大一统诸多任务的通用信息抽取技术 UIE(Unified Structure Generation for Universal Information Extraction),发表在ACL‘22。UIE在实体、关系、事件和情感等4个信息抽取任务、13个数据集的全监督、低资源和少样本设置下,UIE均取得了SOTA性能。
PaddleNLP结合文心大模型中的知识增强NLP大模型ERNIE 3.0,发挥了UIE在中文任务上的强大潜力,开源了首个面向通用信息抽取的产业级技术方案,不需要标注数据(或仅需少量标注数据),即可快速完成各类信息抽取任务。
**链接指路:https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie )
1.使用PaddleNLP Taskflow工具解决信息抽取难点(中文版本)
1.1安装PaddleNLP
! pip install --upgrade paddlenlp
! pip show paddlenlp
1.2 使用Taskflow UIE任务看看效果
人力资源入职证明信息抽取
from paddlenlp import Taskflow
schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']
ie = Taskflow('information_extraction', schema=schema)
schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']
ie.set_schema(schema)
ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。')
[{'姓名': [{'text': '凌霄',
'start': 3,
'end': 5,
'probability': 0.9042383385504706}],
'毕业院校': [{'text': '嘉利顿大学',
'start': 28,
'end': 33,
'probability': 0.9927952662605009}],
'职位': [{'text': '总经理助理',
'start': 44,
'end': 49,
'probability': 0.9922470268350594}],
'月收入': [{'text': '12000 元',
'start': 77,
'end': 84,
'probability': 0.9788556518998917}],
'身体状况': [{'text': '良好',
'start': 92,
'end': 94,
'probability': 0.9939678710475306}]}]
# Jupyter Notebook默认做了格式化输出,如果使用其他代码编辑器,可以使用Python原生包pprint进行格式化输出
from pprint import pprint
pprint(ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。'))
医疗病理分析
schema = ['肿瘤部位', '肿瘤大小']
ie.set_schema(schema)
ie('胃印戒细胞癌,肿瘤主要位于胃窦体部,大小6*2cm,癌组织侵及胃壁浆膜层,并侵犯血管和神经。')
[{'肿瘤部位': [{'text': '胃窦体部',
'start': 13,
'end': 17,
'probability': 0.9601818899487213}],
'肿瘤大小': [{'text': '6*2cm',
'start': 20,
'end': 25,
'probability': 0.9670914301489972}]}]
1.3使用Taskflow UIE进行实体抽取、关系抽取、事件抽取、情感分类、观点抽取
# 实体抽取
schema = ['时间', '赛手', '赛事名称']
ie.set_schema(schema)
ie('2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!')
[{'时间': [{'text': '2月8日上午',
'start': 0,
'end': 6,
'probability': 0.9857379716035553}],
'赛手': [{'text': '中国选手谷爱凌',
'start': 24,
'end': 31,
'probability': 0.7232891682586384}],
'赛事名称': [{'text': '北京冬奥会自由式滑雪女子大跳台决赛',
'start': 6,
'end': 23,
'probability': 0.8503080086948529}]}]
# 关系抽取
schema = {'歌曲名称': ['歌手', '所属专辑']}
ie.set_schema(schema)
ie('《告别了》是孙耀威在专辑爱的故事里面的歌曲')
[{'歌曲名称': [{'text': '告别了',
'start': 1,
'end': 4,
'probability': 0.629614912348881,
'relations': {'歌手': [{'text': '孙耀威',
'start': 6,
'end': 9,
'probability': 0.9988381005599081}],
'所属专辑': [{'text': '爱的故事',
'start': 12,
'end': 16,
'probability': 0.9968462078543183}]}},
{'text': '爱的故事',
'start': 12,
'end': 16,
'probability': 0.28168707817316374,
'relations': {'歌手': [{'text': '孙耀威',
'start': 6,
'end': 9,
'probability': 0.9951415104192272}]}}]}]
# 事件抽取
schema = {'地震触发词': ['地震强度', '时间', '震中位置', '震源深度']} # 事件需要通过xxx触发词来选择触发词
ie.set_schema(schema)
ie('中国地震台网正式测定:5月16日06时08分在云南临沧市凤庆县(北纬24.34度,东经99.98度)发生3.5级地震,震源深度10千米。')
[{'地震触发词': [{'text': '地震',
'start': 56,
'end': 58,
'probability': 0.9977425555988333,
'relations': {'地震强度': [{'text': '3.5级',
'start': 52,
'end': 56,
'probability': 0.998080217831891}],
'时间': [{'text': '5月16日06时08分',
'start': 11,
'end': 22,
'probability': 0.9853299772936026}],
'震中位置': [{'text': '云南临沧市凤庆县(北纬24.34度,东经99.98度)',
'start': 23,
'end': 50,
'probability': 0.7874014521275967}],
'震源深度': [{'text': '10千米',
'start': 63,
'end': 67,
'probability': 0.9937974422968665}]}}]}]
# 情感倾向分类
schema = '情感倾向[正向,负向]' # 分类任务需要[]来设置分类的label
ie.set_schema(schema)
ie('这个产品用起来真的很流畅,我非常喜欢')
[{'情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.9990024058203417}]}]
# 评价抽取
schema = {'评价维度': ['观点词', '情感倾向[正向,负向]']} # 评价抽取的schema是固定的,后续直接按照这个schema进行观点抽取
ie.set_schema(schema) # Reset schema
ie('地址不错,服务一般,设施陈旧')
[{'评价维度': [{'text': '地址',
'start': 0,
'end': 2,
'probability': 0.9888139270606509,
'relations': {'观点词': [{'text': '不错',
'start': 2,
'end': 4,
'probability': 0.9927845886615216}],
'情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.998228967796706}]}},
{'text': '设施',
'start': 10,
'end': 12,
'probability': 0.9588298547520608,
'relations': {'观点词': [{'text': '陈旧',
'start': 12,
'end': 14,
'probability': 0.928675281256794}],
'情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9949388606013692}]}},
{'text': '服务',
'start': 5,
'end': 7,
'probability': 0.9592857070501211,
'relations': {'观点词': [{'text': '一般',
'start': 7,
'end': 9,
'probability': 0.9949359182521675}],
'情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9952498258302498}]}}]}]
# 跨任务跨领域抽取
schema = ['寺庙', {'丈夫': '妻子'}] # 抽取的任务中包含了实体抽取和关系抽取
ie.set_schema(schema)
ie('李治即位后,让身在感业寺的武则天续起头发,重新纳入后宫。')
[{'寺庙': [{'text': '感业寺',
'start': 9,
'end': 12,
'probability': 0.9888581774497425}],
'丈夫': [{'text': '李治',
'start': 0,
'end': 2,
'probability': 0.989690572797457,
'relations': {'妻子': [{'text': '武则天',
'start': 13,
'end': 16,
'probability': 0.9987625986790256}]}}]}]
1.4使用Taskflow UIE一些技巧
1.4.1. 调整batch_size提升预测效率
from paddlenlp import Taskflow
schema = ['费用']
ie.set_schema(schema)
ie = Taskflow('information_extraction', schema=schema, batch_size=2) #资源不充裕情况,batch_size设置小点,利用率增加。。
ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])
[{'费用': [{'text': '46块钱',
'start': 13,
'end': 17,
'probability': 0.9781786110574338}]},
{'费用': [{'text': '110元',
'start': 11,
'end': 15,
'probability': 0.9504088995163151}]},
{'费用': [{'text': '46元',
'start': 21,
'end': 24,
'probability': 0.9753814247531167}]},
{'费用': [{'text': '21元',
'start': 15,
'end': 18,
'probability': 0.9761294626311425}]}]
1.4.2. 使用UIE-Tiny模型来加快模型预测速度
from paddlenlp import Taskflow
schema = ['费用']
ie.set_schema(schema)
ie = Taskflow('information_extraction', schema=schema, batch_size=2, model='uie-tiny') #
ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])
[{'费用': [{'text': '46块钱',
'start': 13,
'end': 17,
'probability': 0.8945340489542026}]},
{'费用': [{'text': '110元',
'start': 11,
'end': 15,
'probability': 0.9757676375014448}]},
{'费用': [{'text': '46元',
'start': 21,
'end': 24,
'probability': 0.860397941604333}]},
{'费用': [{'text': '21元',
'start': 15,
'end': 18,
'probability': 0.8595131018474689}]}]
2.小样本提升UIE效果
Taskflow中的UIE基线版本我们是通过大量的有标签样本进行训练,但是UIE抽取的效果面对部分子领域的效果也不是令人满意,UIE可以通过小样本就可以快速提升效果。
为什么UIE可以通过小样本来提升效果呢?UIE的建模方式主要是通过 Prompt 方式来建模, Prompt 在小样本上进行微调效果非常有效,下面我们通过一个具体的case
来展示UIE微调的效果。

2.1语音报销工单信息抽取
1. 背景
在某公司内部可以通过语音输入来报销打车费用,通过语音ASR模型可以将语音识别为文字,同时对文字信息进行信息抽取,抽取的信息主要是包括了4个方面,时间、出发地、目的地、费用,通过对文字4个方面的信息进行抽取就可以完成一个报销工单的填写。

2. 挑战
目前Taskflow UIE任务对于这种非常垂类的任务效果没有完全达到工业使用水平,因此需要一定的微调手段来完成UIE模型的微调来提升模型的效果,下面是一些case的展现
ie.set_schema(['时间', '出发地', '目的地', '费用'])
ie('10月16日高铁从杭州到上海南站车次d5414共48元') # 无法准确抽取出发地、目的地
[{'时间': [{'text': '10月16日',
'start': 0,
'end': 6,
'probability': 0.9552445817793149}],
'出发地': [{'text': '杭州',
'start': 9,
'end': 11,
'probability': 0.5713024802221334}],
'费用': [{'text': '48元',
'start': 24,
'end': 27,
'probability': 0.8932524634666485}]}]
2.2 标注数据
参考链接详细版本—doccano标注过程
我们推荐使用数据标注平台doccano 进行数据标注,本案例也打通了从标注到训练的通道,即doccano导出数据后可通过doccano.py脚本轻松将数据转换为输入模型时需要的形式,实现无缝衔接。为达到这个目的,您需要按以下标注规则在doccano平台上标注数据:

Step 1. 本地安装doccano(请勿在AI Studio内部运行,本地测试环境python=3.8)
$ pip install doccano
Step 2. 初始化数据库和账户(用户名和密码可替换为自定义值)
$ doccano init
$ doccano createuser --username my_admin_name --password my_password
Step 3. 启动doccano
- 在一个窗口启动doccano的WebServer,保持窗口
$ doccano webserver --port 8000
- 在另一个窗口启动doccano的任务队列
$ doccano task
Step 4. 运行doccano来标注实体和关系
- 打开浏览器(推荐Chrome),在地址栏中输入
http://127.0.0.1:8000/后回车即得以下界面。

登陆账户。点击右上角的
LOGIN,输入Step 2中设置的用户名和密码登陆。创建项目。点击左上角的
CREATE,跳转至以下界面。- 勾选序列标注(
Sequence Labeling) - 填写项目名称(
Project name)等必要信息 - 勾选允许实体重叠(
Allow overlapping entity)、使用关系标注(Use relation labeling) - 创建完成后,项目首页视频提供了从数据导入到导出的七个步骤的详细说明。


- 勾选序列标注(
设置标签。在Labels一栏点击
Actions,Create Label手动设置或者Import Labels从文件导入。- 最上边Span表示实体标签,Relation表示关系标签,需要分别设置。

- 最上边Span表示实体标签,Relation表示关系标签,需要分别设置。
导入数据。在Datasets一栏点击
Actions、Import Dataset从文件导入文本数据。- 根据文件格式(File format)给出的示例,选择适合的格式导入自定义数据文件。
- 导入成功后即跳转至数据列表。
标注数据。点击每条数据最右边的
Annotate按钮开始标记。标记页面右侧的标签类型(Label Types)开关可在实体标签和关系标签之间切换。- 实体标注:直接用鼠标选取文本即可标注实体。
- 关系标注:首先点击待标注的关系标签,接着依次点击相应的头尾实体可完成关系标注。
导出数据。在Datasets一栏点击
Actions、Export Dataset导出已标注的数据。
将标注数据转化成UIE训练所需数据
- 将doccano平台的标注数据保存在
./data/目录。对于语音报销工单信息抽取的场景,可以直接下载标注好的数据。
各个任务标注文档
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/uie/doccano.md
! wget https://paddlenlp.bj.bcebos.com/datasets/erniekit/speech-cmd-analysis/audio-expense-account.jsonl
! mv audio-expense-account.jsonl ./data/
运行以下代码将标注数据转换为UIE训练所需要的数据
splits 0.2 0.8 0.0 训练集 测试集 验证集
可配置参数说明
doccano_file: 从doccano导出的数据标注文件。save_dir: 训练数据的保存目录,默认存储在data目录下。negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。task_type: 选择任务类型,可选有抽取和分类两种类型的任务。options: 指定分类任务的类别标签,该参数只对分类类型任务有效。prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。is_shuffle: 是否对数据集进行随机打散,默认为True。seed: 随机种子,默认为1000.
! python preprocess.py --input_file ./data/audio-expense-account.jsonl --save_dir ./data/ --negative_ratio 5 --splits 0.2 0.8 0.0 --seed 1000
2.3 训练UIE模型
- 使用标注数据进行小样本训练,模型参数保存在
./checkpoint/目录。
tips: 推荐使用GPU环境,否则可能会内存溢出。CPU环境下,可以修改model为uie-tiny,适当调下batch_size。
增加准确率的话:–num_epochs 设置大点多训练训练
可配置参数说明:
train_path: 训练集文件路径。dev_path: 验证集文件路径。save_dir: 模型存储路径,默认为./checkpoint。learning_rate: 学习率,默认为1e-5。batch_size: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数,默认为16。max_seq_len: 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。num_epochs: 训练轮数,默认为100。model: 选择模型,程序会基于选择的模型进行模型微调,可选有uie-base和uie-tiny,默认为uie-base。seed: 随机种子,默认为1000.logging_steps: 日志打印的间隔steps数,默认10。valid_steps: evaluate的间隔steps数,默认100。device: 选用什么设备进行训练,可选cpu或gpu。
! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-tiny --learning_rate 1e-5 --batch_size 2 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10
#! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-base --learning_rate 1e-5 --batch_size 16 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10
- 使用小样本训练后的模型参数再次测试无法正确抽取的case。
from paddlenlp import Taskflow
schema = ['时间', '出发地', '目的地', '费用']
few_ie = Taskflow('information_extraction', schema=schema, task_path='./checkpoint/model_best')
few_ie(['10月16日高铁从杭州到上海南站车次d5414共48元',
'10月22日从公司到首都机场38元过路费'])
[{'时间': [{'text': '10月16日',
'start': 0,
'end': 6,
'probability': 0.9998620769863464}],
'出发地': [{'text': '杭州',
'start': 9,
'end': 11,
'probability': 0.997861665709749}],
'目的地': [{'text': '上海南站',
'start': 12,
'end': 16,
'probability': 0.9974161074329579}],
'费用': [{'text': '48',
'start': 24,
'end': 26,
'probability': 0.950222029031579}]},
{'时间': [{'text': '10月22日',
'start': 0,
'end': 6,
'probability': 0.9995716364718135}],
'目的地': [{'text': '首都机场',
'start': 10,
'end': 14,
'probability': 0.9984550308953608}],
'费用': [{'text': '38',
'start': 14,
'end': 16,
'probability': 0.9465688451171062}]}]
PaddleNLP--UIE(二)--小样本快速提升性能(含doccona标注)的更多相关文章
- 如何使用ModelBox快速提升AI应用性能?
摘要:在开发初期开发者往往聚焦在模型的精度上,性能关注较少,但随着业务量不断增加,AI应用的性能往往成为瓶颈,此时对于没有性能优化经验的开发者来说往往需要耗费大量精力做优化性能,本文为开发者介绍一些常 ...
- [.net 面向对象程序设计进阶] (15) 缓存(Cache)(二) 利用缓存提升程序性能
[.net 面向对象程序设计进阶] (15) 缓存(Cache)(二) 利用缓存提升程序性能 本节导读: 上节说了缓存是以空间来换取时间的技术,介绍了客户端缓存和两种常用服务器缓布,本节主要介绍一种. ...
- [NewLife.XCode]高级查询(化繁为简、分页提升性能)
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netcore,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示例代码和 ...
- Redis(二十一):Redis性能问题排查解决手册(转)
性能相关的数据指标 通过Redis-cli命令行界面访问到Redis服务器,然后使用info命令获取所有与Redis服务相关的信息.通过这些信息来分析文章后面提到的一些性能指标. info命令输出的数 ...
- SQL Server中使用Check约束提升性能
在SQL Server中,SQL语句的执行是依赖查询优化器生成的执行计划,而执行计划的好坏直接关乎执行性能. 在查询优化器生成执行计划过程中,需要参考元数据来尽可能生成高效的执行计划, ...
- paip.提升性能----数据库连接池以及线程池以及对象池
paip.提升性能----数据库连接池以及线程池以及对象池 目录:数据库连接池c3po,线程池ExecutorService:Jakartacommons-pool对象池 作者Attilax 艾龙, ...
- paip.提升性能3倍--使用栈跟VirtualAlloc代替堆的使用.
paip.提升性能3倍--使用栈跟VirtualAlloc代替堆的使用. #----为什么要设计堆栈,它有什么独特的用途? 为了性能 .... 堆比栈的性能 也有的说法为了编程容易...这个是错误的 ...
- 从零开始写一个武侠冒险游戏-7-用GPU提升性能(2)
从零开始写一个武侠冒险游戏-7-用GPU提升性能(2) ----把地图处理放在GPU上 作者:FreeBlues 修订记录 2016.06.21 初稿完成. 2016.08.06 增加对 XCode ...
- [NewLife.XCode]扩展属性(替代多表关联Join提升性能)
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netstandard,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示 ...
- 通过jdbc使用PreparedStatement,提升性能,防止sql注入
为什么要使用PreparedStatement? 一.通过PreparedStatement提升性能 Statement主要用于执行静态SQL语句,即内容固定不变的SQL语句.Statement每执行 ...
随机推荐
- 【主流技术】MongoTemplate 与 Spring Boot 项目集成分享(附CURD技巧)
目录 前言 一.表结构特点 1.1Json格式 1.2实体映射 二.条件构造 2.1Criteria与Query的区别 2.2简单条件 2.3复杂条件 三.如何选用接口 3.1MongoReposit ...
- 记一次go应用在k8s pod已用内存告警不准确分析
版权说明: 本文章版权归本人及博客园共同所有,转载请在文章前标明原文出处( https://www.cnblogs.com/mikevictor07/p/17968696.html ),以下内容为个人 ...
- JSP | Web 应用开发概述
原作者为 RioTian@cnblogs, 本作品采用 CC 4.0 BY 进行许可,转载请注明出处. 前文提示,本文基于 <JSP 应用开发与实践>-- 刘乃琦老师的书籍以及 C语言中文 ...
- Codeforces Round #674 (Div. 3) (A - F题题解)
A. Floor Number https://codeforces.com/contest/1426/problem/A 题意: 一个楼房房间号由 \(1\) 递增,一楼仅2个房间.给定一位用户的房 ...
- 2.5D 组态案例合集 | 智慧园区、数据中心、SMT 生产线、汽车制造
在阅读文章之前,大家可以思考下 2.5D 设计属于哪种界定? 2.5D 是通过二维的元素来呈现出三维的效果.其实在国外并没有 2.5D 这样的称呼,标准说法是 Isometric 风格,翻译过来就是等 ...
- [吉他谱]duvet
- 如何安全的大数据量表在线进行DDL操作
本文为博主原创,转载请注明出处 随着业务的需要,工作中需要对生产数据库的一些表做一些DDL操作,由于生产数据库表的数据量都是几千万, 而且生产数据库的表还在不断的进行新增和查询操作.应用中需要对生产数 ...
- Laravel - 使用查询构造器查询
public function constructorQuery() { # 1,新增 DB::table('student')->insert([ ...
- [转帖]使用MAT命令行工具生成堆dump分析文件
https://www.cnblogs.com/hellxz/p/use_mat_linux_command_line_generate_reports.html 写作目标 Java程序运行过程中,难 ...
- [转帖]Linux基础之chkconfig systemd
https://www.cnblogs.com/barneywill/p/10461279.html CentOS6服务用chkconfig控制,CentOS7改为systemd控制 1 syst ...