个性化联邦学习算法框架发布,赋能AI药物研发
摘要:近期,中科院上海药物所、上海科技大学联合华为云医疗智能体团队,在Science China Life Sciences 发表题为“Facing Small and Biased Data Dilemma in Drug Discovery with Enhanced Federated Learning Approaches”的文章。
本文分享自华为云社区《中科院上海药物所/上海科技大学、华为云联合团队发布个性化联邦学习算法框架,赋能AI药物研发》,作者: 华为云头条 。
文章来源:中国科学杂志社
药物研发是一个漫长的过程,传统的药物研发需要投入大量的研发人员,并且花费十到十五年,数十亿美元的研发经费才能使一个药物走向上市。近些年来,随着AI、大数据和云计算等技术的发展,越来越多的制药公司和科技巨头把目光投到这一领域。然而AI药物研发面临着一系列困难和挑战,AI模型需要大量的数据进行建模,而药物研发数据的高壁垒、高成本、高机密性影响到了制药公司数据贡献的积极性。同时,数据孤岛现象普遍存在,很多企业内部的数据都是量少而且高度有偏的,这给高质量的AI药物研发模型带来很大的挑战。近年来新兴的联邦学习可以很好的解决这个问题。联邦学习本质上是一种分布式机器学习技术,其目标是在保证数据隐私安全合规的基础上,实现共同建模。在联邦学习框架下,多家药企之间无需共享数据,仅通过共享模型权重,来实现药企之间协同训练,在保证数据安全的同时彼此增强AI模型的效果。
近期,中科院上海药物所、上海科技大学联合华为云医疗智能体团队,在Science China Life Sciences 发表题为“Facing Small and Biased Data Dilemma in Drug Discovery with Enhanced Federated Learning Approaches”的文章。联合团队使用三个任务来模拟跨数据孤岛的联合学习过程:基于化学结构进行药物溶解度、激酶抑制活性和hERG心脏毒性的预测。这些数据涵盖了不同的药物化学空间、实验测量方法、实验条件和数据大小,代表真实世界中不同制药公司的数据分布的差异。借此,来研究联邦学习对打破数据孤岛的意义,并从分析结果中发现,联邦学习的效果均优于单独数据来源的模型训练。
接着,为进一步提升模型效果,联合团队引入了残差全连接网络(RFCN),通过利用AI自动建模工具AutoGenome1,对三个任务重新训练以获得更精确的模型骨架;另外,在联邦模型参数整合策略中联合团队引入了个性化联邦学习(FedAMP)2,为联邦计算参与者训练个性化模型,并且通过注意力消息传递机制加强具有相似数据分布的参与者之间的协同,使得数据贡献越多、质量越好的参与方获益也越大;在激酶抑制活性预测的性能对比我们可以看到,RFCN和FedAMP的引入,在药物溶解度、激酶抑制活性和hERG心脏毒性预测这三个AI任务上,均优于传统MLP和FedAvg方法。
近日,上海药物所/上海科技大学和华为云医疗智能体,联合发布基于华为云ModelArts平台的药物联邦学习服务,来帮助药企和研究机构更加方便的使用药物联邦学习,通过简单的四步操作,参与联邦学习的用户就可以便捷的实现联邦训练:第一步:盟主创建联盟,定义联邦任务,如药物结构预测水溶解度;第二步:盟主邀请参与者加入联邦,参与者同意加入;第三步:联邦成员部署代理,配置联邦运行环境;第四步:盟主启动联邦任务,开始联邦作业训练。
华为云医疗智能体EIHealth基于华为云AI昇腾集群服务、华为云一站式AI开发平台ModelArts的强大AI能力,集成了医药领域众多算法、工具、AI模型和自动化流水线,目标是打造一个全栈、开放、专业的医疗行业企业级AI研发平台。 更多信息请访问 : https://www.huaweicloud.com/product/eihealth.html
参考文献
1. Liu, D. et al. AutoGenome: An AutoML Tool for Genomic Research. bioRxiv 842526 (2019) doi:10.1101/842526.2. Huang, Y. et al. Personalized Cross-Silo Federated Learning on Non-IID Data. arXiv:2007.03797 [cs, stat] (2021).
个性化联邦学习算法框架发布,赋能AI药物研发的更多相关文章
- 联邦学习开源框架FATE助力腾讯神盾沙箱,携手打造数据安全合作生态
近日,微众银行联邦学习FATE开源社区迎来了两位新贡献者——来自腾讯的刘洋及秦姝琦,作为云计算安全领域的专家,两位为FATE构造了新的功能点,并在Github上提交修复了相关漏洞.(Github项目地 ...
- 联邦学习开源框架FATE架构
作者:京东科技 葛星宇 1.前言 本文除特殊说明外,所指的都是fate 1.9版本. fate资料存在着多处版本功能与发布的文档不匹配的情况,各个模块都有独立的文档,功能又有关联,坑比较多,首先要理清 ...
- 联邦学习FATE框架安装搭建
联邦学习 FATE (Federated AI Technology Enabler) 是微众银行AI部门发起的开源项目,为联邦学习生态系统提供了可靠的安全计算框架.FATE项目使用多方安全计算 (M ...
- 强化学习(十七) 基于模型的强化学习与Dyna算法框架
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...
- 联邦学习 Federated Learning 相关资料整理
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
- Apache Pulsar 在腾讯 Angel PowerFL 联邦学习平台上的实践
腾讯 Angel PowerFL 联邦学习平台 联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融.医疗.城市安防等领域. 腾讯 Angel PowerFL 联邦学习平台构建 ...
- MindSpore联邦学习框架解决行业级难题
内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程 ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
- 简要介绍Active Learning(主动学习)思想框架,以及从IF(isolation forest)衍生出来的算法:FBIF(Feedback-Guided Anomaly Discovery)
1. 引言 本文所讨论的内容为笔者对外文文献的翻译,并加入了笔者自己的理解和总结,文中涉及到的原始外文论文和相关学习链接我会放在reference里,另外,推荐读者朋友购买 Stephen Boyd的 ...
- 1、学习算法和刷题的框架思维——Go版
前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...
随机推荐
- 谈谈流计算中的『Exactly Once』特性
本文翻译自 streaml.io 网站上的一篇博文:"Exactly once is NOT exactly the same" ,分析了流计算系统中常说的『Exactly Onc ...
- java中ArrayList和LinkedList的区别
Java中ArrayList和LinkedList都是List集合的实现类,它们都可以用来存储一组有序的元素,但是它们的内部实现方式不同,在使用时也有不同的适用场景. ArrayList是一个基于动态 ...
- 🔥🔥Java开发者的Python快速进修指南:面向对象进阶
在上一期中,我们对Python中的对象声明进行了初步介绍.这一期,我们将深入探讨对象继承.组合以及多态这三个核心概念.不过,这里不打算赘述太多理论,因为我们都知道,Python与Java在这些方面的主 ...
- ruoyi vue 前后端分离版本 打包分离jar包至lib
环境:若依前后端分离版本,原打包时将所有的依赖jar包放至ruoyi-admin.jar 包中,该包130MB,过大. 需求:为了减少打包更新上传的时间,减少至1.1mb 1.将不常更新的模块jar包 ...
- 伯俊ERP与金蝶云星空对接集成连通应收单新增
伯俊ERP与金蝶云星空对接集成表头表体组合查询连通应收单新增(应收单-标准应收单(KD应收单销售退) 数据源系统:伯俊ERP 未来,伯俊科技也会砥砺前行,不断为品牌提供更全面的零售终端致胜利器.伯俊科 ...
- ERP到底是什么?
ERP,全称企业资源计划,ERP系统主要是优化企业内部的业务流程,用信息化管控的方式进行一系列板块的管理,它可以看作是进销存系统的进阶版,主要针对供应链中下游. ERP的业务覆盖范围广,实际上它更加侧 ...
- 【Android】实现连接SQLite并尝试进行增删改查
- DevOps|研发提效-敏捷开发之每日站立会
对于研发效能团队建设和组织,本文不再赘述,可以参考之前的文章,已经讲得很透彻了.本文重点讲我们日常是怎么开站立会,怎么让团队跑起来,高效能产出的.每日站立会,15分钟到30分钟,看似非常短的一个会,但 ...
- React 中虚拟DOM是什么,为什么需要它?
注意:本节主要讲React中的虚拟DOM,但是虚拟DOM并不是React中特有的内容. 1. React 中虚拟 DOM是什么? 虚拟DOM是对真实DOM的描述,虚拟DOM是JS对象,实际上就是 JS ...
- [ABC246D] 2-variable Function
Problem Statement Given an integer $N$, find the smallest integer $X$ that satisfies all of the cond ...