Mokia(三维偏序)P4390
提到cdq,就不得不提这道该死的,挨千刀的题目了。
极简题面:
给定一个二维平面,在ti时刻会在(xi,yi)放一个点,会在tj时刻查询一个方框里面的点的数量
看道题就是二维线段树乱搞啊,这么水???
数据范围劝退警告
单是一维都快有点吃不消了...1e6*1e6的数组?几个GB???
。。。
于是,伟大的CDQ分治出场了。
题面其实可以这样翻译:
按时插入点,询问小于(x,y)且时间也小于当前点的点的个数
这不就是CDQ的事吗?比模板题还要裸。。。
但是可能要差分一下(二维差分)因为统计的是点与00组成的大矩形,所以要剪去两个矩形,再加上一个小矩形,所以要统计四个点的偏序
总结一下,就是cdq。
第一维时间,第二维x,第三维y
一定要离线做
于是开始了愉快的CDQ
#include<bits/stdc++.h>
using namespace std;
const int maxn=; struct node
{
int time,x,y,val,id;
}e[maxn];
int m,cnt,t[maxn<<],a[maxn],ans[maxn];
inline int lowbit(int x)
{
return x & - x ;
}
void add(int x,int y)
{
for(;x<=m;x+=lowbit(x))
{
t[x]+=y;
}
}
int ask(int x)
{
int res=;
for(;x;x-=lowbit(x))
{
res+=t[x];
}
return res;
}
bool cmp2(node a,node b)
{
if(a.x!=b.x)return a.x<b.x;
if(a.y!=b.y)return a.y<b.y;
//else return a.time<b.time;
}
bool cmp(node a,node b)
{
return a.time<b.time;
}
void cdq(int l,int r)
{
if(l==r)return;
int mid=l+r>>;
cdq(l,mid);
cdq(mid+,r);
sort(e+l,e++r,cmp2);
for(int i=l;i<=r;i++)
{
if(e[i].x<=mid&&e[i].id==)
add(e[i].y,e[i].val);
else e[i].val+=ask(e[i].y);
}
for(int i=l;i<=r;i++)
{
if(e[i].x<=mid&&e[i].id==)
add(e[i].y,-e[i].val);
}
}
int read()
{
int f=,x=;char s=getchar();
while(s>''||s<''){if(s=='-')f=-;s=getchar();}
while(s<=''&&s>=''){x=x*+s-'';s=getchar();}
return x*f;
}
int main()
{
read();
m=read();
int flag=read();
while(flag!=)
{
if(flag==)
{
int x=read()+,y=read()+,val=read();
e[++cnt]=(node){cnt,x,y,val,};
}
else
{
int x1=read(),yl=read(),x2=read()+,y2=read()+;
e[++cnt]=(node){cnt,x1,yl,,};//数据结构体化
e[++cnt]=(node){cnt,x2,y2,,};
e[++cnt]=(node){cnt,x2,yl,,};
e[++cnt]=(node){cnt,x1,y2,,};
}
flag=read();
}
cdq(,cnt);然后硬cdq就行了
sort(e+,e+cnt+,cmp);
for(int i=;i<=cnt;++i)
{
if(e[i].id==)
{
printf("%d\n",e[i].val+e[i+].val-e[i+].val-e[i+].val);
i+=;
}
}
return ;
}
(完)
Mokia(三维偏序)P4390的更多相关文章
- BZOJ 1176/2683 Mokia (三维偏序CDQ+树状数组)
题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序, ...
- P4390 [BOI2007]Mokia 摩基亚 (CDQ解决三维偏序问题)
题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫米.但其真正高科 ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组
原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第 ...
- P3810 -三维偏序(陌上花开)cdq-分治
P3810 [模板]三维偏序(陌上花开) 思路 :按照 1维排序 二维 分治三维树状数组维护 #include<bits/stdc++.h> using namespace std; #d ...
- cdq分治解决三维偏序
问题背景 在三维坐标系中有n个点,坐标为(xi,yi,zi). 定义一个点A比一个点B小,当且仅当xA<=xB,yA<=yB,zA<=zB.问对于每个点,有多少个点比它小.(n< ...
- P3810 【模板】三维偏序(陌上花开)
P3810 [模板]三维偏序(陌上花开) cdq分治+树状数组 三维偏序模板题 前两维用cdq分治,第三维用树状数组进行维护 就像用树状数组搞逆序对那样做--->存权值的出现次数 attenti ...
随机推荐
- 基于Docker和Golang搭建Web服务器
1 场景描述 基于centos7的docker镜像搭建golang开发环境 在docker容器内,使用golang实现一个Web服务器 启动docker容器,并在容器内启动Web服务器 我购买了一个最 ...
- Ansible Roles角色
Roles小技巧: 1.创建roles目录结构,手动或使用ansible-galaxy init test roles 2.编写roles的功能,也就是tasks. nginx rsyncd memc ...
- Maven项目下使用log4j
Apache Log4j是一个基于Java的日志记录工具,它的日志级别按下面顺序递减: 级别 描述 OFF 最高级别,用于关闭日志记录. FATAL 将导致应用程序提前终止的严重错误的信息将立即呈现在 ...
- 阿里云学生服务器+WordPress搭建个人博客
搭建过程: 第一步:首先你需要一台阿里云服务器ECS,如果你是学生,可以享受学生价9.5元/月 (阿里云翼计划:https://promotion.aliyun.com/ntms/act/campus ...
- 小工具---将图片文件MultipartFile保存到指定目录
import org.springframework.web.multipart.MultipartFile; import java.io.IOException; /** 保存图片 @author ...
- 特征真的越多越好吗?从特征工程角度看“garbage in,garbage out”
1. 从朴素贝叶斯在医疗诊断中的迷思说起 这个模型最早被应用于医疗诊断,其中,类变量的不同值用于表示患者可能患的不同疾病.证据变量用于表示不同症状.化验结果等.在简单的疾病诊断上,朴素贝叶斯模型确实发 ...
- Spring Boot项目中如何定制HTTP消息转换器
在构建RESTful数据服务过程中,我们定义了controller.repositories,并用一些注解修饰它们,但是到现在为止我们还没执行过对象的转换--将java实体对象转换成HTTP的数据输出 ...
- 关于vue使用的一些小经验
这一年来说,vue的势头很猛,用户量“噌”“噌”“噌”的涨 为了不掉队不落伍.在后台大哥的胁迫下,不得不选择用了它 刚开始很难接受vue的写法,在编辑器里很容易报错,基本上每行都会出现红色的波浪线 这 ...
- Js正则学习笔记
众所周知正则表达式是十分强大的存在,编码时能够熟练使用正则能够极大的简化代码,因此掌握正则非常有必要. 创建正则语法: // 创建正则的两种方式// 1.构造函数 let reg = new RegE ...
- linux上war包方式安装Jenkins
我的安装环境:jdk1.8, linux系统为: [root@ipha-dev71-1 nmon]# cat /etc/redhat-release # Linux查看版本当前操作系统发行版信息 Ce ...