Description:N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。

传送门

lct这么神仙的东西一个题解都不写怎么行???

神仙思路啊。

其实不是很难但是的确不容易想到。

我们考虑答案是什么。

首先刚开始有n个点分别是联通块,然后你连了一些边使联通块减少了。

怎么减少的呢?就是区间的边的生成树上边的数量。因为如果不是生成树上的边,那么一定与生成树上的边成环了而不会合并联通块。

怎么判断边是不是区间内生成树上的边呢?判断依据就是它有没有和前面的边成环。

那么我们先把边连起来,当连边时我们发现这两个点已经联通时,这条边就可以取代出现的最早的那条边。

如果它取代的那条边不在区间之内,那么这条边就在生成树上。

所以就来一棵LCT,边化点后维护最大编号就行,把每条边插入之前询问会被替代的边,存在数组lst里。

那么对于每一组询问,问题就变成了问在数组lst下标[l,r]内lst值小于l的有几个。

用主席树维护一下就好了。

记住这种思路。

 #include<cstdio>
#include<iostream>
using namespace std;
int c[][],f[],w[],n,m,k,opt,fid[],lst[],q[];
int x[],y[],ans,rt[],v[],t[][],lz[],cnt;
int find(int p){return fid[p]==p?p:fid[p]=find(fid[p]);}
#define lc c[p][0]
#define rc c[p][1]
bool not_root(int p){return c[f[p]][]==p||c[f[p]][]==p;}
void rev(int p){lc^=rc^=lc^=rc;lz[p]^=;}
void down(int p){if(lz[p])rev(lc),rev(rc),lz[p]=;}
void up(int p){w[p]=min(p>n?p:,min(w[lc],w[rc]));}
void rotate(int p){
int fa=f[p],gr=f[fa],dir=c[fa][]==p,br=c[p][!dir];
if(not_root(fa))c[gr][c[gr][]==fa]=p; c[p][!dir]=fa; c[fa][dir]=br;
f[p]=gr; f[fa]=p; f[br]=fa; up(fa);
}
void splay(int p){
int res=p,top=;q[++top]=p;
while(not_root(res))q[++top]=res=f[res];
while(top)down(q[top--]);
while(not_root(p)){
int fa=f[p],gr=f[fa];
if(not_root(fa))rotate(c[fa][]==p^c[gr][]==fa?fa:p);
rotate(p);
}
up(p);
}
void access(int p){for(int y=;p;p=f[y=p])splay(p),rc=y,up(p);}
void make_root(int p){access(p);splay(p);rev(p);}
void split(int x,int y){make_root(x);access(y);splay(y);}
void cut(int x,int y){split(x,y);f[x]=c[y][]=;up(y);}
void link(int x,int y){make_root(x);f[x]=y;up(y);}
void build(int &p,int cpy,int adx,int l=,int r=m){
if(!p)p=++cnt;
if(l==r){v[p]=v[cpy]+;return;}
if(adx<=l+r>>)build(t[p][],t[cpy][],adx,l,l+r>>),t[p][]=t[cpy][];
else build(t[p][],t[cpy][],adx,(l+r>>)+,r),t[p][]=t[cpy][];
v[p]=v[t[p][]]+v[t[p][]];//printf("%d %d %d\n",l,r,v[p]);
}
int ask(int p1,int p2,int l,int r,int cl=,int cr=m){//printf("%d %d %d %d\n",cl,cr,v[p2],v[p1]);
if(!(v[p2]-v[p1]))return ;
if(l<=cl&&cr<=r)return v[p2]-v[p1];
return (l<=cl+cr>>?ask(t[p1][],t[p2][],l,r,cl,cl+cr>>):)+(r>cl+cr>>?ask(t[p1][],t[p2][],l,r,(cl+cr>>)+,cr):);
}
int main(){w[]=;
scanf("%d%d%d%d",&n,&m,&k,&opt);
for(int i=;i<=n;++i)fid[i]=i;
for(int i=;i<=m;++i){
scanf("%d%d",&x[i],&y[i]);
if(x[i]==y[i])lst[i]=i;
else if(find(x[i])!=find(y[i]))fid[fid[x[i]]]=fid[y[i]],link(x[i],n+i),link(n+i,y[i]);
else split(x[i],y[i]),lst[i]=w[y[i]]-n,cut(lst[i]+n,x[lst[i]]),cut(lst[i]+n,y[lst[i]]),
link(x[i],n+i),link(y[i],n+i);
build(rt[i],rt[i-],lst[i]);//printf("%d\n",lst[i]);
}
for(int i=,l,r;i<=k;++i){
scanf("%d%d",&l,&r);
if(opt)l^=ans,r^=ans;
ans=n-ask(rt[l-],rt[r],,l-);
printf("%d\n",ans);
}
}

GERALD07加强版:lct,主席树,边化点的更多相关文章

  1. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  2. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  3. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  4. 【BZOJ3514】Codechef MARCH14 GERALD07加强版 LCT+主席树

    题解: 还是比较简单的 首先我们的思路是 确定起点 然后之后贪心的选择边(也就是越靠前越希望选) 我们发现我们只需要将起点从后向前枚举 然后用lct维护连通性 因为强制在线,所以用主席树记录状态就可以 ...

  5. BZOJ3514:GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  6. BZOJ 3514 GERALD07加强版 (LCT+主席树)

    题目大意:给定n个点m条边无向图,每次询问求当图中有编号为[L,R]的边时,整个图的联通块个数,强制在线 神题!(发现好久以前的题解没有写完诶) 我们要求图中联通块的个数,似乎不可搞啊. 联通块个数= ...

  7. BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT

    BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. I ...

  8. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  9. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

随机推荐

  1. DJango配置mysql数据库以及数据库迁移

    DJango配置mysql数据库以及数据库迁移 一.Django 配置MySQL数据库 在settings.py中配置 import pymysql # 配置MySQL pymysql.install ...

  2. java普通项目打包成可执行jar文件时如何添加第三包

    在java的web项目中,引用第三方包的时候非常简单.因为在web项目上中,默认有一个web-inf文件夹.web-inf文件夹下有一个lib文件夹,如果有用到第三方包,直接丢进去就行了.但是对于普通 ...

  3. CentOS 7.6 Telnet服务搭建(Openssh升级之战 第一任务备用运输线搭建)

    (以下内容亲手完成,如果需要搬走记得把写博的小白的名字和邮箱一起搬走) 出来玩(学习),总是要还的! 有不明的问题的时候,都来博客园转转,总能找到答案或者灵感,开博3个月都没发一篇帖(不晓得管理员有何 ...

  4. DevSecOps 笔记

    什么是DevSecOps “DevSecOps”,一种全新的安全理念与模式,从DevOps的概念延伸和演变而来,其核心理念为安全是整个IT团队(包括开发.运维及安全团队)每个人的责任,需要贯穿从开发到 ...

  5. docker实验--redis集群搭建

    背景介绍: 我经常在做一些小项目的时候,采用了Redis来做缓存,但是都是基于单节点的,一旦redis挂了,整个项目就挂了.于是乎,想到了多节点集群的方式来使用,就开始折腾着怎么去搭建这个集群.在网上 ...

  6. 01--Java语言概述与开发环境 最适合入门的Java教程

    Java 程序运行机制 编译型语言: 使用专门的编译器,针对特定平台(操作系统)将某种高级语言源代码一次性"翻 译"成可被该平台硬件执行的机器码(包括机器指令和操作数),并包装成该 ...

  7. spring在IoC容器中装配Bean详解

    1.Spring配置概述 1.1.概述 Spring容器从xml配置.java注解.spring注解中读取bean配置信息,形成bean定义注册表: 根据bean定义注册表实例化bean: 将bean ...

  8. ESP8266开发之旅 基础篇① 走进ESP8266的世界

    授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...

  9. 解析fiddler返回的部分数据。

    1.通过抓包获取的数据,里面包含的哪些内容是需要我们去关注的? 2.首先上图. 3.图片说明: 此图片中是利用豆瓣API提供的接口实现返回数据.内容与抓包返回的内容格式一致 url:https://a ...

  10. Spring Cloud Alibaba学习笔记(23) - 调用链监控工具Spring Cloud Sleuth + Zipkin

    随着业务发展,系统拆分导致系统调用链路愈发复杂一个前端请求可能最终需要调用很多次后端服务才能完成,当整个请求陷入性能瓶颈或不可用时,我们是无法得知该请求是由某个或某些后端服务引起的,这时就需要解决如何 ...