I hope you know the beautiful Union-Find structure. In this problem, you’re to implement somethingsimilar, but not identical.The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:1 p q Union the sets containing p and q. If p and q are already in the same set,ignore this command.2 p q Move p to the set containing q. If p and q are already in the same set,ignore this command.3 p Return the number of elements and the sum of elements in the set containingp.Initially, the collection contains n sets: {1}, {2}, {3}, . . . , {n}.InputThere are several test cases. Each test case begins with a line containing two integers n and m(1 ≤ n, m ≤ 100, 000), the number of integers, and the number of commands. Each of the next m linescontains a command. For every operation, 1 ≤ p, q ≤ n. The input is terminated by end-of-file (EOF).OutputFor each type-3 command, output 2 integers: the number of elements and the sum of elements.ExplanationInitially: {1}, {2}, {3}, {4}, {5}Collection after operation 1 1 2: {1,2}, {3}, {4}, {5}Collection after operation 2 3 4: {1,2}, {3,4}, {5} (we omit the empty set that is produced whentaking out 3 from {3})Collection after operation 1 3 5: {1,2}, {3,4,5}Collection after operation 2 4 1: {1,2,4}, {3,5}Sample Input5 71 1 22 3 41 3 53 42 4 13 43 3Sample Output3 123 72 8

AC代码为:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int maxn = 1e5 + 10;
int father[maxn], id[maxn], sum[maxn], cnt[maxn];
int n, m, p, q, dt, temp;

int Find(int a)
{
return a == father[a] ? a : Find(father[a]);
}

void Union_set(int a, int b)
{
int x = Find(a);
int y = Find(b);
if (x != y)
{
father[y] = x;
cnt[x] += cnt[y];
sum[x] += sum[y];
}
}

void Move_set(int a)
{
int fa = Find(id[a]);
sum[fa] -= a;
cnt[fa]--;
id[a] = ++temp;
father[id[a]] = temp;
cnt[id[a]] = 1;
sum[id[a]] = a;
}

int main()
{
while (scanf("%d%d", &n, &m) != EOF)
{
temp = n;
for (int i = 0; i <= n; i++)
{
father[i] = i;
sum[i] = i;
id[i] = i;
cnt[i] = 1;
}
while (m--)
{
cin >> dt;

if (dt == 1)
{
cin >> p >> q;
Union_set(id[p], id[q]);

}
else if (dt == 2)
{
cin >> p >> q;
int t1 = Find(id[p]);
int t2 = Find(id[q]);
if (t1 != t2)
{
Move_set(p);
Union_set(id[p], id[q]);
}

}
else
{
cin >> p;
int fat = Find(id[p]);
cout << cnt[fat] << " " << sum[fat] << endl;
}
}

}

return 0;
}

UVA-11987的更多相关文章

  1. UVA - 11987 Almost Union-Find[并查集 删除]

    UVA - 11987 Almost Union-Find I hope you know the beautiful Union-Find structure. In this problem, y ...

  2. UVA 11987 - Almost Union-Find(并查集)

    UVA 11987 - Almost Union-Find 题目链接 题意:给定一些集合,操作1是合并集合,操作2是把集合中一个元素移动到还有一个集合,操作3输出集合的个数和总和 思路:并查集,关键在 ...

  3. UVa 11987 Almost Union-Find(支持删除操作的并查集)

    传送门 Description I hope you know the beautiful Union-Find structure. In this problem, you’re to imple ...

  4. UVA 11987 Almost Union-Find (并查集+删边)

    开始给你n个集合,m种操作,初始集合:{1}, {2}, {3}, … , {n} 操作有三种: 1 xx1 yy1 : 合并xx1与yy1两个集合 2 xx1 yy1 :将xx1元素分离出来合到yy ...

  5. 并查集(删除) UVA 11987 Almost Union-Find

    题目传送门 题意:训练指南P246 分析:主要是第二种操作难办,并查集如何支持删除操作?很巧妙的方法:将并查集树上p的影响消除,即在祖先上(sz--, sum -= p),然后为p换上马甲:id[p] ...

  6. uva 11987 Almost Union-Find (并检查集合)

    标题效果: 三操作. 1. 合并两个集合 2.代替所述第二组的第一个元素 3.输出设置数量,并.. IDEAS: 使用p该元素的记录数,其中集合,建立并查集. #include <cstdio& ...

  7. UVa 11987 Almost Union-Find (虚拟点)【并查集】

    <题目链接> 题目大意: 刚开始,1到n个集合中分别对应着1~n这些元素,然后对这些集合进行三种操作: 输入 1 a b 把a,b所在的集合合并 输入 2 a b 把b从b所在的旧集合移到 ...

  8. UVA - 11987 Almost Union-Find(带删除的并查集)

    I hope you know the beautiful Union-Find structure. In this problem, you’re to implement something s ...

  9. UVA 11987 Almost Union-Find (单点修改的并查集)

    此题最难处理的操作就是将一个单点改变集合,而普通的并查集是不支持这种操作的. 当结点p是叶子结点的时候,直接pa[p] = root(q)是可以的, p没有子结点,这个操作对其它结点不会造成任何影响, ...

  10. UVA - 11987 Almost Union-Find 并查集的删除

    Almost Union-Find I hope you know the beautiful Union-Find structure. In this problem, you're to imp ...

随机推荐

  1. docker——harbor

    为什么要用harbor? 在实际生产运维中,往往需要把镜像发布到几十.上百台或更多的节点上.这时单台Docker主机上镜像已无法满足,项目越来越多,镜像就越来越多,都放到一台Docker主机上是不行的 ...

  2. docker swarm 过滤器affinity 限制副本不会出现在同一个节点上

    affinity:container!=容器服务名称(可以是正则) 举个例子:stack_ds.yaml # cat stack_dsc.yaml version: '3.0' services: t ...

  3. 02. JVM运行机制

    JVM运行机制 JVM启动流程 JVM基本结构 内存模型 编译和解释运行的概念 一.JVM启动流程

  4. 除了获取 MAC 地址还能干啥

            以前写过一篇<在Web中获取MAC地址>的文章,文章的地址是:https://www.cnblogs.com/tosser/p/9022187.html,我当时使用 OCX ...

  5. JS如何在不给新空间的情况下给数组去重?

    1.先排序,在让相邻元素对比去重 const nums = [3, 1, 1, 5, 2, 3, 4, 3, 5, 5, 6, 4, 6, 6, 6]; Array.prototype.arrayNo ...

  6. linux配置安装源

    ubutu:图形界面或者/etc/apt/sources.list redhat7:可以把DVD安装盘里的软件包拷贝到硬盘,然后设置一个本地源,具体如下: /etc/yum.repos.d/local ...

  7. shell命令管道未读完阻塞了子进程,与等待其结束的父进程死"锁"。

    在exec执行一个子进程,我们希望使用管道取得子进程在重定向后的标准输出上的结果,同时等待子进程的结束.那么是等待子进程结束后才取管道数据,还是边取数据边等待子进程结束呢? 这里有一个调试的例子.u0 ...

  8. Android加载大量图片内存溢出解决办法

    当我们在做项目过程中,一遇到显示图片时,就要考虑图片的大小,所占内存的大小,原因就是Android分配给Bitmap的大小只有8M,试想想我们用手机拍照,普通的一张照片不也得1M以上,所以androi ...

  9. html基础——表格练习

    最终样式 步骤分析: 标题和报名时间为一块 表格为一块 由图可知,可创建一个七行八列的列表存储数据 首先设置边框的样式,边框 大小,这里是黑色不好看可以设置为天空蓝 可选矿使用<input ty ...

  10. (一)OpenStack---M版---双节点搭建---基础环境配置

    ↓↓↓↓↓↓↓↓视频已上线B站↓↓↓↓↓↓↓↓ >>>>>>传送门 配置如下 本次搭建采用2台4核4G的虚拟机,也可以用2台2核4G 主机名 配置 网络 Contr ...