前言
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
作者:蒋狗 

 
新手注意:如果你Python基础学的不够扎实,遇问题没人解答?可以点我进裙看我的最新入门到实战教程复习下再来

基本使用

运用多进程时,将方法放在main()中,否则会出现异常警告。

Process() 基本使用:与Thread()类似。

Pool() 基本使用:

其中map方法用起来和内置的map函数一样,却有多进程的支持。

from multiprocessing import Pool
pool = Pool(2)
pool.map(fib, [35] * 2)

multiprocessing.dummy 模块:

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the threading module.

对于以上部分知识点,没有实际运用过,只是单纯了解并编写Demo进行了练习,理解没有很透彻。

# -*- coding: utf-8 -*-
from multiprocessing import Process, Pool
from multiprocessing.dummy import Pool as DummyPool
import time
import datetime def log_time(methond_name):
def decorator(f):
def wrapper(*args, **kwargs):
start_time = time.time()
res = f(*args, **kwargs)
end_time = time.time()
print('%s cost %ss' % (methond_name, (end_time - start_time)))
return res
return wrapper
return decorator def fib(n):
if n <=2 :
return 1
return fib(n-1) + fib(n-2) @log_time('single_process')
def single_process():
fib(33)
fib(33) @log_time('multi_process')
def multi_process():
jobs = []
for _ in range(2):
p = Process(target=fib, args=(33, ))
p.start()
jobs.append(p)
for j in jobs:
j.join() @log_time('pool_process')
def pool_process():
pool = Pool(2)
pool.map(fib, [33]*2) @log_time('dummy_pool')
def dummy_pool():
pool = DummyPool(2)
pool.map(fib, [33]*2) if __name__ == '__main__':
single_process()
multi_process()
pool_process()
dummy_pool()

基于Pipe的parmap

理解稍有困难。注意:如果你Python基础不够扎实,可以点我进裙看我的最新入门到实战教程复习


队列

实现生产消费者模型,一个队列存放任务,一个队列存放结果。 
multiprocessing模块下也有Queue,但不提供task_done()join()方法。故利用Queue存放结果,JoinableQueue() 来存放任务。

仿照的Demo,一个消费者进程和一个生产者进程:

# -*- coding: utf-8 -*-
from multiprocessing import Process, Queue, JoinableQueue
import time
import random def double(n):
return n * 2 def producer(name, task_q):
while 1:
n = random.random()
if n > 0.8: # 大于0.8时跳出
task_q.put(None)
print('%s break.' % name)
break
print('%s produce %s.' % (name, n))
task_q.put((double, n)) def consumer(name, task_q, result_q):
while 1:
task = task_q.get()
if task is None:
print('%s break.' % name)
break
func, arg = task
res = func(arg)
time.sleep(0.5) # 阻塞
task_q.task_done()
result_q.put(res)
print('%s consume %s, result %s' % (name, arg, res)) def run():
task_q = JoinableQueue()
result_q = Queue()
processes = []
p1 = Process(name='p1', target=producer, args=('p1', task_q))
c1 = Process(name='c1', target=consumer, args=('c1', task_q, result_q))
p1.start()
c1.start()
processes.append(p1)
processes.append(c1) # join()阻塞主进程
for p in processes:
p.join() # 子进程结束后,输出result中的值
while 1:
if result_q.empty():
break
result = result_q.get()
print('result is: %s' % result) if __name__ == '__main__':
run()

如果存在多个consumer()进程,只会有一个consumer()进程能取出None并break,其他的则会在task_q.get()一直挂起,尝试在consumer()方法中添加超时退出。

import queue

def consumer(name, task_q, result_q):
while 1:
try:
task = task_q.get(1) # 1s
except queue.Empty:
print('%s time out, break.' % name)
if task is None:
print('%s break.' % name)
break
func, arg = task
res = func(arg)
time.sleep(0.5) # 阻塞
task_q.task_done()
result_q.put(res)
print('%s consume %s, result %s' % (name, arg, res))

共享内存

利用sharedctypes中的ArrayValue来共享内存。 
下例为仿照。

# -*- coding: utf-8 -*-

from pprint import pprint

# 共享内存
from multiprocessing import sharedctypes, Process, Lock
from ctypes import Structure, c_bool, c_double pprint(sharedctypes.typecode_to_type) lock = Lock() class Point(Structure):
_fields_ = [('x', c_double), ('y', c_double)] # _fields_ def modify(n, b, s, arr, A):
n.value **= 2
b.value = True
s.value = s.value.upper()
arr[0] = 10
for a in A:
a.x **= 2
a.y **= 2 if __name__ == '__main__': n = sharedctypes.Value('i', 7)
b = sharedctypes.Value(c_bool, False, lock=False)
s = sharedctypes.Array('c', b'hello world', lock=lock) # bytes
arr = sharedctypes.Array('i', range(5), lock=True)
A = sharedctypes.Array(Point, [(1.875, -6.25), (-5.75, 2.0)], lock=lock)
p = Process(target=modify, args=(n, b, s, arr, A))
p.start()
p.join()
print(n.value)
print(b.value)
print(s.value)
print(arr[:])
print([(a.x, a.y) for a in A])

实际项目中利用Value来监测子进程的任务状态, 并通过memcached来存储更新删除。

# -*- coding: utf-8 -*-

from multiprocessing import Process, Value
import time
import datetime
import random FINISHED = 3
FAILED = 4
INPROCESS = 2
WAITING = 1 def execute_method(status, process):
time.sleep(1)
status.value = INPROCESS # test
time.sleep(1)
status.value = FINISHED # test
time.sleep(0.5) def run(execute_code):
status = Value('i', WAITING )
process = Value('f', 0.0)
# mem_cache.set('%s_status' % execute_code, status.value, 0)
# mem_cache.set('%s_process' % execute_code, process .value, 0)
p = Process(target=execute_method, args=(status, process))
p.start()
start_time = datetime.datetime.now()
while True:
print(status.value)
now_time = datetime.datetime.now()
if (now_time - start_time).seconds > 30: # 超过30sbreak
# mem_cache.delete('%s_status' % execute_code)
# mem_cache.delete('%s_process' % execute_code)
print('execute failed')
p.terminate()
break
if status.value == 3:
# mem_cache.delete('%s_status' % execute_code)
# mem_cache.delete('%s_process' % execute_code)
print('end execute')
break
else:
# mem_cache.set('%s_status' % execute_code, status.value, 0)
# mem_cache.set('%s_process' % execute_code, process .value, 0)
print('waiting or executing')
time.sleep(0.5)
p.join()

服务进程

下例为仿照博客中的服务进程的例子,简单的展示了Manager的常见的共享方式。

一个multiprocessing.Manager对象会控制一个服务器进程,其他进程可以通过代理的方式来访问这个服务器进程。 常见的共享方式有以下几种: 
1. Namespace。创建一个可分享的命名空间。 
2. Value/Array。和上面共享ctypes对象的方式一样。 
dict/list。创建一个可分享的 
3. dict/list,支持对应数据结构的方法。 
4. Condition/Event/Lock/Queue/Semaphore。创建一个可分享的对应同步原语的对象。

# -*- coding: utf-8 -*-
from multiprocessing import Manager, Process def modify(ns, lproxy, dproxy):
ns.name = 'new_name'
lproxy.append('new_value')
dproxy['new'] = 'new_value' def run():
# 数据准备
manager = Manager()
ns = manager.Namespace()
ns.name = 'origin_name'
lproxy = manager.list()
lproxy.append('origin_value')
dproxy = manager.dict()
dproxy['origin'] = 'origin_value' # 子进程
p = Process(target=modify, args=(ns, lproxy, dproxy))
p.start()
print(p.pid)
p.join() print('ns.name: %s' % ns.name)
print('lproxy: %s' % lproxy)
print('dproxy: %s' % dproxy) if __name__ == '__main__':
run()

上例主要是展示了Manager中的共享对象类型和代理,查看源码知是通过register()方法。

multiprocessing/managers.py:

#
# Definition of SyncManager
# class SyncManager(BaseManager):
'''
Subclass of `BaseManager` which supports a number of shared object types. The types registered are those intended for the synchronization
of threads, plus `dict`, `list` and `Namespace`. The `multiprocessing.Manager()` function creates started instances of
this class.
''' SyncManager.register('Queue', queue.Queue)
SyncManager.register('JoinableQueue', queue.Queue)
SyncManager.register('Event', threading.Event, EventProxy)
SyncManager.register('Lock', threading.Lock, AcquirerProxy)
SyncManager.register('RLock', threading.RLock, AcquirerProxy)
SyncManager.register('Semaphore', threading.Semaphore, AcquirerProxy)
SyncManager.register('BoundedSemaphore', threading.BoundedSemaphore,
AcquirerProxy)
SyncManager.register('Condition', threading.Condition, ConditionProxy)
SyncManager.register('Barrier', threading.Barrier, BarrierProxy)
SyncManager.register('Pool', pool.Pool, PoolProxy)
SyncManager.register('list', list, ListProxy)
SyncManager.register('dict', dict, DictProxy)
SyncManager.register('Value', Value, ValueProxy)
SyncManager.register('Array', Array, ArrayProxy)
SyncManager.register('Namespace', Namespace, NamespaceProxy) # types returned by methods of PoolProxy
SyncManager.register('Iterator', proxytype=IteratorProxy, create_method=False)
SyncManager.register('AsyncResult', create_method=False)

除了在子进程中,还可利用Manager()来在不同进程间通信,如下面的分布式进程简单实现。


分布进程

和上例的主要区别是,非子进程间进行通信。

manager_server.py:

# -*- coding: utf-8 -*-

from multiprocessing.managers import BaseManager

host = '127.0.0.1'
port = 8080
authkey = b'python' shared_list = [] class ServerManager(BaseManager):
pass ServerManager.register('get_list', callable=lambda: shared_list)
server_manager = ServerManager(address=(host, port), authkey=authkey)
server = server_manager.get_server()
server.serve_forever()

manager_client.py

# -*- coding: utf-8 -*-

from multiprocessing.managers import BaseManager

host = '127.0.0.1'
port = 8080
authkey = b'python' class ClientManager(BaseManager):
pass ClientManager.register('get_list')
client_manager = ClientManager(address=(host, port), authkey=authkey)
client_manager.connect() l = client_manager.get_list()
print(l) l.append('new_value')
print(l)

运行多次后,shared_list中会不断添加new_value

仿照廖雪峰教程上的分布式进程加以适当修改。

manager_server.py:

# -*- coding: utf-8 -*-

from multiprocessing.managers import BaseManager
from multiprocessing import Condition, Value
import queue host = '127.0.0.1'
port = 8080
authkey = b'python' task_q = queue.Queue(10)
result_q = queue.Queue(20)
cond = Condition()
done = Value('i', 0) def double(n):
return n * 2 class ServerManager(BaseManager):
pass ServerManager.register('get_task_queue', callable=lambda: task_q)
ServerManager.register('get_result_queue', callable=lambda: result_q)
ServerManager.register('get_cond', callable=lambda: cond)
ServerManager.register('get_done', callable=lambda: done)
ServerManager.register('get_double', callable=double) server_manager = ServerManager(address=(host, port), authkey=authkey)
server = server_manager.get_server() print('start server')
server.serve_forever(

manager_producer.py:

# -*- coding: utf-8 -*-

from multiprocessing.managers import BaseManager
import random
import time host = '127.0.0.1'
port = 8080
authkey = b'python' class ProducerManager(BaseManager):
pass ProducerManager.register('get_task_queue')
ProducerManager.register('get_cond')
ProducerManager.register('get_done')
producer_manager = ProducerManager(address=(host, port), authkey=authkey) producer_manager.connect()
task_q = producer_manager.get_task_queue()
cond = producer_manager.get_cond()
# done = producer_manager.get_done()
count = 20 # 最多有20个任务 while count > 0:
if cond.acquire():
if not task_q.full():
n = random.randint(0, 10)
task_q.put(n)
print("Producer:deliver one, now tasks:%s" % task_q.qsize())
cond.notify()
count -= 1
time.sleep(0.5)
else:
print("Producer:already full, stop deliver, now tasks:%s" % task_q.qsize())
cond.wait()
cond.release()
# done.value = 1
print('Producer break')

manager_consumer.py:

# -*- coding: utf-8 -*-

from multiprocessing.managers import BaseManager

host = '127.0.0.1'
port = 8080
authkey = b'python' class ConsumerManager(BaseManager):
pass ConsumerManager.register('get_task_queue')
ConsumerManager.register('get_result_queue')
ConsumerManager.register('get_cond')
# ConsumerManager.register('get_done')
ConsumerManager.register('get_double') consumer_manager = ConsumerManager(address=(host, port), authkey=authkey)
consumer_manager.connect() task_q = consumer_manager.get_task_queue()
result_q = consumer_manager.get_result_queue()
cond = consumer_manager.get_cond()
# done = consumer_manager.get_done() while 1:
if result_q.full():
print('result queue is full')
break
if cond.acquire():
if not task_q.empty():
arg = task_q.get()
res = consumer_manager.get_double(arg)
print("Consumer:consume one, now tasks:%s" % task_q.qsize())
result_q.put(res)
cond.notify()
else:
print("Consumer:only 0, stop consume, products")
cond.wait()
cond.release() while 1:
if result_q.empty():
break
result = result_q.get()
print('result is: %s' % result)

60%的人不懂Python进程Process,你懂吗?的更多相关文章

  1. Python 进程(process)

    1. 进程 1.1 进程的创建 fork 正在运行着的代码,就称为进程 # 示例: import os # 注意: fork 函数,只在 Unix/Linux/Mac 上运行, windows 不可以 ...

  2. Python进程、线程、协程详解

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. ...

  3. python——进程、线程、协程

    Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #!/usr/bin/env pytho ...

  4. python2.0 s12 day8 _ python线程&python进程

    1.进程.与线程区别2.cpu运行原理3.python GIL全局解释器锁4.线程 1.语法 2.join 3.线程锁之Lock\Rlock\信号量 4.将线程变为守护进程 5.Event事件 6.q ...

  5. python 进程和线程(代码知识部分)

    二.代码知识部分 一 multiprocessing模块介绍: python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情 ...

  6. 第 10 章 python进程与多进程

    一.背景知识 顾明思义,进程即正在执行的一个过程,进程是对正在云的程序的一个抽象. 进程的概念起源与操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一,操作系统的其他所 ...

  7. python——进程基础

    我们现在都知道python的多线程是个坑了,那么多进程在这个时候就变得很必要了.多进程实现了多CPU的利用,效率简直棒棒哒~~~ 拥有一个多进程程序: #!/usr/bin/env python #- ...

  8. python进程、线程、协程(转载)

    python 线程与进程简介 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资 ...

  9. python进程池剖析(一)

    python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要 ...

随机推荐

  1. mpvue开发微信小程序,分享按钮报错:`Cannot read property 'apply' of null`

    用mpvue开发微信小程序,分享按钮报错:Cannot read property 'apply' of null onShareAppMessage 是于微信小程序Pages的生命周期钩子,顾这个方 ...

  2. 在VMware15.5中安装CentOS7_7_64bit

    一.创建虚拟机 在我的另一个随笔里有. 地址为:https://www.cnblogs.com/qi-yuan/p/11692092.html 只是在虚拟机安装操作系统时候选择 Linux 而不是 W ...

  3. TCP time_wait close_wait问题(可能是全网最清楚的例子)

    背景 公司群里,运维发现一个问题,task服务报错(如下) The stream or file \"/data/logs/adn_task/offer_service.log\" ...

  4. 一个自动修正数据时间和补全缺失数据的MapReduce程序

    原始数据如下图: 程序: Mapper类: public class DemoMapper extends Mapper<LongWritable,Text,IntWritable,Text&g ...

  5. Java IO入门

    目录 一. 数据源(流) 二. 数据传输 三. 总结 我们从两个方面来理解Java IO,数据源(流).数据传输,即IO的核心就是对数据源产生的数据进行读写并高效传输的过程. 一. 数据源(流) 数据 ...

  6. 彻底搞懂CSS伪类选择器:is、not

    本文介绍一下Css伪类:is和:not,并解释一下is.not.matches.any之前的关系 :not The :not() CSS pseudo-class represents element ...

  7. 攻防世界 4-ReeHY-main

    检查保护机制: 发现  可以好像写got 然后 程序流程 这里  有double free 然后 再发现 这里很有趣 ,要是我的content为零了 且size 小于112 那就从栈上copy一些内容 ...

  8. MyBaits框架入门总结

    MBaits简介 联系方式:18873247271(微信同步) 廖先生 qq:1727292697 MyBatis的前身叫iBatis,本是apache的一个开源项目, 2010年这个项目由apach ...

  9. Shell - 长 ping 脚本监控网络时延

    生产环境中, 网络时延是一个很重要的指标. 为了方便检查网络时延的大小, 我们可以通过ping命令实现长时间的网络监控. 1 ping 命令的使用 1.1 常用参数 -i: 每次执行ping操作的间隔 ...

  10. 手把手教你优雅的编写第一个SpringMVC程序

    可能之前写的文章走进SpringMVC世界,从SpringMVC入门到SpringMVC架构中的第一个springMVC入门程序讲解的不是那么优雅.细致.精巧,因此特地写这篇稍微优雅.细致.精巧一些的 ...