更新、更全的《数据结构与算法》的更新网站,更有python、go、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11407287.html

一、题意理解

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构的”。现给定两棵树,请你判断它们是否是同构的。

输入格式:输入给出2棵二叉树的信息:

  • 先在一行中给出该树的结点树,随后N行

  • 第i行对应编号第i个结点,给出该结点中存储的字母、其左孩子结点的编号、右孩子结点的编号

  • 如果孩子结点为空,则在相应位置给出“-”

如下图所示,有多种表示的方式,我们列出以下两种:

二、求解思路

  1. 二叉树表示
  2. 建二叉树
  3. 同构判别

2.1 二叉树表示

结构数组表示二叉树:静态链表

/* c语言实现 */

#define MaxTree 10
#define ElementType char
#define Tree int
#define Null -1 struct TreeNode
{
ElementType Element;
Tree Left;
Tree Right;
} T1[MaxTree], T2[MaxTree];

2.2 程序框架搭建

需要设计的函数:

  • 读数据建二叉树
  • 二叉树同构判别
/* c语言实现 */

int main():
{
建二叉树1;
建二叉树2;
判别是否同构并输出; return 0;
} int main()
{
Tree R1, R2; R1 = BuildTree(T1);
R2 = BuildTree(T2);
if (Isomorphic(R1, R2)) printf("Yes\n");
else printf("No\n"); return 0;
}

2.3 如何建二叉树

/* c语言实现 */

Tree BuildTree(struct TreeNode T[])
{
...;
scanf("%d\n", &N); // 输入需要建立树的长度
if (N) {
...;
for (i=0; i<N; i++) {
scanf("%c %c %c\n", &T[i].Element, &cl, &cr);
...;
}
...;
Root = ??? // 可以通过T[i]中没有任何结点的left(cl)和right(cr)指向他这个条件获取。
}
return Root;
}
/* c语言实现 */

Tree BuildTree(struct TreeNode T[])
{
...;
scanf("%d\n", &N); // 输入需要建立树的长度
if (N) {
for (i=0; i<N; i++) check[i] = 0;
for (i=0; i<N; i++) {
scanf("%c %c %c\n", &T[i].Element, &cl, &cr);
if (cl != '-'){
T[i].Left = cl-'0';
check[T[i].Left] = 1;
}
else T[i].Left = Null;
...; // 对cr的对应处理
}
for (i=0; i<N; i++)
if (!check[i]) break;
Root = i; // 可以通过T[i]中没有任何结点的left(cl)和right(cr)指向他这个条件获取。
}
return Root;
}

2.4 如何判别两二叉树同构

/* c语言实现 */

int Isomorphic(Tree R1, Tree R2)
{
if ((R1 == Null) && (R2 == Null)) // 左右子树都为空
return 1;
if (((R1==Null)&&(R2!=Null)) || ((R1!=Null)&&(R2==Null)))
return 0; // 其中一颗子树为空
if (T1[R1].Element != T2[R2].Element)
return 0; // 空结点为空
if ((T1[R1].Left == Null ) && ( T2[R2].Left == Null)) // 根的左右结点没有子树
return Isomorphic(T1[R1].Right, T2[R2].Right);
if (((T1[R1].Left != Null) && (T2[R2].Left!=Null)) &&
((T1[T1[R1].Left].Element) == (T2[T2[R2].Left].Element))) // 左右子树不需要转换
{
return (Isomorphic(T1[R1].Left, T2[R2].Left) &&
Isomorphic(T1[R1].Right, T2[R2].Right));
}
else { // 左右子树需要转换
return (Isomorphic(T1[R1].Left, T2[R2].Right) &&
Isomorphic(T1[R1].Right, T2[R2].Left));
}
}

小白专场-树的同构-c语言实现.md的更多相关文章

  1. 小白专场-树的同构-python语言实现

    目录 一.题意理解 二.求解思路 更新.更全的<数据结构与算法>的更新网站,更有python.go.人工智能教学等着你:<https://www.cnblogs.com/nickch ...

  2. 03-树1 树的同构 (C语言链表实现)

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h& ...

  3. PAT 03-树1 树的同构 (25分)

    给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右孩子互换后 ...

  4. BZOJ 4337: BJOI2015 树的同构 树hash

    4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...

  5. SDUT 3340 数据结构实验之二叉树一:树的同构

    数据结构实验之二叉树一:树的同构 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定两棵树 ...

  6. PTA 深入虎穴 (正解)和树的同构

    在上一篇博客中分享了尝试用单链表修改程序,虽然在Dev上运行没有错误,但是PTA设置的测试点有几个没有通过,具体不清楚问题出现在哪里,所以现在把之前正确的程序放在这里. 7-2 深入虎穴 (30 分) ...

  7. 4337: BJOI2015 树的同构

    题解: 树的同构的判定 有根树从根开始进行树hash 先把儿子的f进行排序 $f[i]=\sum_{j=1}^{k} { f[j]*prime[j]} +num[i]$(我没有仔细想这样是不是树是唯一 ...

  8. [BJOI2015]树的同构

    嘟嘟嘟 判断树的同构的方法就是树上哈希. 如果树是一棵有根树,那么只要从根节点出发dfs,每一个节点的哈希值等于按传统方式算出来的子树的哈希值的结果.需要注意的是,算完子树的哈希值后要先排序再加起来, ...

  9. bzoj4337树的同构

    树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重 ...

随机推荐

  1. Java枚举类型 enum

    定义 An enum type is a special data type that enables for a variable to be a set of predefined constan ...

  2. viewpager_轮播

    public class MainActivity extends Activity { private ViewPager pager; private int[] id={R.layout.lay ...

  3. Javasrcipt中从一个url或者从一个字符串中获取参数值得方法

    从url中获取参数值是che程序开发过程中的常用需求,偶然得闲,便抽空研究了一下javasrcipt下,获取参数的办法(JAVA中也类似). 首先看url的规范: URL组成:protocol :// ...

  4. K8S搭建-1 Master 2 Workers(dashboard+ingress)

    本文讲述k8s最新版的搭建(v1.15.2) 分如下几个topic步骤: 各个节点的基本配置 master节点的构建 worker节点的构建 安装dashboard 安装ingress 常见命令 do ...

  5. react父组件调用子组件中方法

  6. SSH原理讲解与实践

    一.简介 SSH全名Secure Socket Shell,安全外壳传输协议.专为远程登录会话和其他网络服务提供安全性的协议 二.加密算法 要了解SSH的原理,就要先知道目前主流的俩种加密算法 2.1 ...

  7. 【JVM从小白学成大佬】开篇

    JVM的重要性毋庸置疑,可以毫不夸张的说Java虚拟机是整个Java平台的基石. JVM方面的知识,也一直是BAT等大厂面试考核的重点.特别是JVM调优,故障排查性能调优,你知道该从哪些方面入手吗? ...

  8. 常用Feed流架构实现

    业务中很多需求都会用到类似feed流的架构. 例如 微信朋友圈 微博 动态 1对N消息. 一般feed流的架构实现有下面几种. 假如现在的业务场景是微博,然后当前的数据情况是: 用户A关注了用户B和C ...

  9. Java虚拟机详解(七)------虚拟机监控和分析工具(1)——命令行

    通过前面的几篇博客,我们介绍了Java虚拟机的内存分配以及内存回收等理论知识,了解这些知识对于我们在实际生产环境中提高系统的运行效率是有很大的帮助的.但是话又说回来,在实际生产环境中,线上项目正在运行 ...

  10. Nacos(八):Nacos持久化

    参考和感谢 Spring Cloud Alibaba基础教程:Nacos的数据持久化 前言 前景回顾: Nacos(七):Nacos共享配置 Nacos(六):多环境下如何"管理" ...