前言

上一节(堆外内存与零拷贝)当中我们从jvm堆内存的视角解释了一波零拷贝原理,但是仅仅这样还是不够的。

为了彻底搞懂零拷贝,我们趁热打铁,接着上一节来继续讲解零拷贝的底层原理。

感受一下NIO的速度

之前的章节中我们说过,Nio并不能解决网络传输的速度。但是为什么很多人却说Nio的速度比传统IO快呢?

没错,zero copy。我们先抛出一个案例,然后根据案例来讲解底层原理。

首先,我们实现一个IO的服务端接受数据,然后分别用传统IO传输方式和NIO传输方式来直观对比传输相同大小的文件所耗费的时间。

服务端代码如下:

public class OldIOServer {

    public static void main(String[] args) throws Exception {
ServerSocket serverSocket = new ServerSocket(8899); while (true) {
Socket socket = serverSocket.accept();
DataInputStream dataInputStream = new DataInputStream(socket.getInputStream()); try {
byte[] byteArray = new byte[4096]; while (true) {
int readCount = dataInputStream.read(byteArray, 0, byteArray.length); if (-1 == readCount) {
break;
}
}
} catch (Exception ex) {
ex.printStackTrace();
}
}
}
}

这个是最普通的socket编程的服务端,没什么好多说的。就是绑定本地的8899端口,死循环不断接受数据。

传统IO传输

public class OldIOClient {

    public static void main(String[] args) throws Exception {
Socket socket = new Socket("localhost", 8899); String fileName = "C:\\Users\\Administrator\\Desktop\\test.zip"; //大小两百M的文件
InputStream inputStream = new FileInputStream(fileName); DataOutputStream dataOutputStream = new DataOutputStream(socket.getOutputStream()); byte[] buffer = new byte[4096];
long readCount;
long total = 0; long startTime = System.currentTimeMillis(); while ((readCount = inputStream.read(buffer)) >= 0) {
total += readCount;
dataOutputStream.write(buffer);
} System.out.println("发送总字节数: " + total + ", 耗时: " + (System.currentTimeMillis() - startTime)); dataOutputStream.close();
socket.close();
inputStream.close();
}
}

客户端向服务端发送一个119M大小的文件。计算一下耗时用了多久

由于我的笔记本性能太渣,大概平均每次消耗的时间大概是 500ms左右。值得注意的是,我们客户端和服务端分配的缓存大小都是4096个字节。如果将这个字节分配的更小一点,那么所耗时间将会更多。因为上述传统的IO实际表现并不是我们想象的那样直接将文件读到内存,然后发送。

实际情况是什么样的呢?我们在后续分析。

NIO传输

public class NewIOClient {

    public static void main(String[] args) throws Exception {
SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(new InetSocketAddress("localhost", 8899));
socketChannel.configureBlocking(true); String fileName = "C:\\Users\\Administrator\\Desktop\\test.zip"; //大小200M的文件 FileChannel fileChannel = new FileInputStream(fileName).getChannel(); long startTime = System.currentTimeMillis(); long transferCount = fileChannel.transferTo(0, fileChannel.size(), socketChannel); //1 System.out.println("发送总字节数:" + transferCount + ",耗时: " + (System.currentTimeMillis() - startTime)); fileChannel.close();
}
}

NIO编程不熟的同学没关系,后面会有一篇专门的章节来讲。

这里我们来关注一下注释1关于FileChannel的transferTo方法。(方法的doc文档很长。我删除了很多,只看重点)

    /**
* Transfers bytes from this channel's file to the given writable byte
* channel.
*
* <p> This method is potentially much more efficient than a simple loop
* that reads from this channel and writes to the target channel. Many
* operating systems can transfer bytes directly from the filesystem cache
* to the target channel without actually copying them. </p>
*/
public abstract long transferTo(long position, long count,
WritableByteChannel target)
throws IOException;

翻译一下:

将文件channel的数据写到指定的channel

这个方法可能比简单的将数据从一个channel循环读到另一个channel更有效,
许多操作系统可以直接从文件系统缓存传输字节到目标通道,**而不实际复制它们**。

意思是我们调用FileChannel的transferTo方法就实现了零拷贝(想实现零拷贝并不止这一种方法,有更优雅的方法,这里只是作为一个演示)。当然也要看你操作系统支不支持底层zero copy。因为这部分工作其实是操作系统来完成的。

我的电脑平均执行下来大概在200ms左右。比传统IO快了300ms。

底层原理

大家也可以用自己的电脑运行一下上述代码,看看NIO传输一个文件比IO传输一个文件快多少。

在上诉代码中,楼主这里指定的缓存只有4096个字节,而传送的文件大小有125581592个字节。

在前面我们分析过,对于传统的IO而言,读取的缓存满了以后会有两次零拷贝过程。那么换算下来传输这个文件大概在内存中进行了6w多次无意义的内存拷贝,这6w多次拷贝在我的笔记本上大概所耗费的时间就是300ms左右。这就是导致NIO比传统IO快的更本原因。

传统IO底层时序图

由上图我们可以看到。当我们想将磁盘中的数据通过网络发送的时候

  1. 底层调用的了sendfile()方法,然后切换用户态(User space)->内核态(Kemel space)。
  2. 从本地磁盘获取数据。获取的数据存储在内核态的内存空间内。
  3. 将数据复制到用户态内存空间里。
  4. 切换内核态->用户态。
  5. 用户操作数据,这里就是我们编写的java代码的具体操作。
  6. 调用操作系统的write()方法,将数据复制到内核态的socket buffer中。
  7. 切换用户态->内核态。
  8. 发送数据。
  9. 发送完毕以后,切换内核态->用户态。继续执行我们编写的java代码。

由上图可以看出。传统的IO发送一次数据,进行了两次“无意义”的内存拷贝。虽然内存拷贝对于整个IO来说耗时是可以忽略不计的。但是操作达到一定次数以后,就像我们上面案例的代码。就会由量变引起质变。导致速率大大降低。


linux2.4版本前的NIO时序图

  1. 底层调用的了sendfile()方法,然后切换用户态(User space)->内核态(Kemel space)。
  2. 从本地磁盘获取数据。获取的数据存储在内核态的内存空间内。
  3. 将内核缓存中的数据拷贝到socket缓冲中。
  4. 将socket缓存的数据发送。
  5. 发送完毕以后,切换内核态->用户态。继续执行我们编写的java代码。

可以看出,即便我们使用了NIO,其实在我们的缓存中依旧会有一次内存拷贝。拷贝到socket buffer(也就是发送缓存区)中。

到这里我们可以看到,用户态已经不需要再缓存数据了。也就是少了用户态和系统态之间的数据拷贝过程。也少了两次用户态与内核态上下文切换的过程。但是还是不够完美。因为在底层还是执行了一次拷贝。

要想实现真真意义上的零拷贝,还是需要操作系统的支持,操作系统支持那就支持。不支持你代码写出花了也不会支持。所以在linux2.4版本以后,零拷贝进化为以下模式。

linux2.4版本后的NIO时序图

这里的步骤与上面的步骤是类似的。看图可以看出,到这里内存中才真正意义上实现了零拷贝。

很多人就会发问了。为什么少了一次内核缓存的数据拷贝到socket缓存的操作?

不急,听我慢慢道来~

我们再来看另一张NIO的流程图:

上面这个图稍稍有点复杂,都看到这里了,别半途而废。多看几遍是能看懂的!

首先第一条黑线我们可以看出,在NIO只切换了两次用户态与内核态之间的上下文切换。

我们重点看这张图下面的部分。

首先我们将硬盘(hard drive)上的数据复制到内核态缓存中(kemel buffer)。然后发生了一次拷贝(CPU copy)到socket缓存中(socket buffer)。最后再通过协议引擎将数据发送出去。

在linux2.4版本前的的确是这样。但是!!!!

在linux2.4版本以后,上图中的从内核态缓存中(kemel buffer)的拷贝到socket缓存中(socket buffer)的就不再是数据了。而是对内核态缓存中数据的描述符(也就是指针)。协议引擎发送数据的时候其实是通过socket缓存中的描述符。找到了内核态缓存中的数据。再将数据发送出去。这样就实现了真正的零拷贝。

总结

我们花了两篇文章,一篇从jvm堆内存的角度出发(堆外内存与零拷贝),以及本篇从操作体统底层出发来讲解零拷贝。足以说明零拷贝的重要性,各位可千万得重视哟,就算你觉得不重要,面试也是会经常被问到,如果你能把上面的流程讲明白,我相信一定也是一大亮点~

Netty基础系列(5) --零拷贝彻底分析的更多相关文章

  1. Netty基础系列(4) --堆外内存与零拷贝详解

    前言 到目前为止,我们知道Nio当中有三个最最核心的组件,分别是:Selelctor,Channel,Buffer.在Netty基础系列(3) --彻底理解NIO 这一篇文章中只是进行了大致的介绍. ...

  2. Netty基础系列(3) --彻底理解NIO

    前言 上一节中我们提到了同步异步与阻塞非阻塞的区别,知道了同步并不等于阻塞.而本节的主角NIO是一种同步非阻塞的I/O模型,并且是I/O多路复用模型.NIO在java中被称为 New I/O.它并不能 ...

  3. linux驱动基础系列--linux spi驱动框架分析

    前言 主要是想对Linux 下spi驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如平台驱动.设备模型等也不进行详细说明原理.如果有任何错误地方,请指出,谢谢! spi ...

  4. linux驱动基础系列--linux spi驱动框架分析(续)

    前言 这篇文章是对linux驱动基础系列--linux spi驱动框架分析的补充,主要是添加了最新的linux内核里设备树相关内容. spi设备树相关信息 如之前的文章里所述,控制器的device和s ...

  5. Netty中ByteBuf 的零拷贝

    转载:https://www.jianshu.com/p/1d1fa2fe1ed9 此文章已同步发布在我的 segmentfault 专栏. 根据 Wiki 对 Zero-copy 的定义: &quo ...

  6. Netty源码解析 -- 零拷贝机制与ByteBuf

    本文来分享Netty中的零拷贝机制以及内存缓冲区ByteBuf的实现. 源码分析基于Netty 4.1.52 Netty中的零拷贝 Netty中零拷贝机制主要有以下几种 1.文件传输类DefaultF ...

  7. 深入了解Netty【二】零拷贝

    引言 以下翻译自:Zero Copy I: User-Mode Perspective 零拷贝是什么? 为了更好地理解问题的解决方案,我们首先需要理解问题本身.让我们来看看什么是参与网络服务器的简单过 ...

  8. Netty基础系列(1) --linux网路I/O模型

    引言 我一直认为对于java的学习,掌握基础的性价比要远远高于使用框架,而基础知识中对于网络相关知识的掌握也是重中之重.对于一个java程序来说,无论是工作中还是面试,对于Netty的掌握都是及其重要 ...

  9. java基础系列之ConcurrentHashMap源码分析(基于jdk1.8)

    1.前提 在阅读这篇博客之前,希望你对HashMap已经是有所理解的,否则可以参考这篇博客: jdk1.8源码分析-hashMap:另外你对java的cas操作也是有一定了解的,因为在这个类中大量使用 ...

随机推荐

  1. 使用WebService发布soap接口,并实现客户端的https验证

    什么是https HTTPS其实是有两部分组成:HTTP + SSL / TLS, 也就是在HTTP上又加了一层处理加密信息的模块,并且会进行身份的验证. 如何进行身份验证? 首先我们要明白什么是对称 ...

  2. Java编程思想:进程控制

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public ...

  3. 在 .h 和 cpp 中查找 :grep consume ~/test/2016/AMQP-CPP/**/*.cpp ~/test/2016/AMQP-CPP/**/*.h -r

    :grep consume ~/test/2016/AMQP-CPP/**/*.cpp ~/test/2016/AMQP-CPP/**/*.h -r -w "whole" 匹配整个 ...

  4. vs2010编译zapline-zapline.systemoptimization 注释工程中的//#define abs(value) (value >= 0 ? value : -(value))即可

    vs2010编译zapline-zapline.systemoptimization-8428e72c88e0.zip出错 1>d:\program files (x86)\microsoft ...

  5. linux 反弹shell

    Linux下反弹shell笔记 0x00 NC命令详解 在介绍如何反弹shell之前,先了解相关知识要点. nc全称为netcat,所做的就是在两台电脑之间建立链接,并返回两个数据流 可运行在TCP或 ...

  6. Feign挡板和Mock

    背景: 在项目开发中,会有调用第三方接口的场景.当开发时,对方不愿意提供测试服务器给我们调用,或者有的接口会按调用次数进行计费.当联调时,第三方的测试服务器也可能会出现不稳定,如果他们的服务挂了,我们 ...

  7. Android CHM文件阅读器

    CHM格式是1998年微软推出的基于HTML文件特性的帮助文件系统.以替代早先的winHelp帮助系统,它也是一种超文本标识语言.在Windows 98中把CHM类型文件称作“已编译的HTML帮助文件 ...

  8. 50 行 Python 代码,带你追到女神

    今天来给大家分享一个撩妹技巧,利用 python 每天给你最心爱的人,发送微信消息,说声晚安. 废话不多说,源代码奉上 def get_news(): ... url = "http://o ...

  9. hdu3416+hdu6582(最短路+最大流)

    题意 hdu3416: 给一个图,边不能重复选,问有多少个最短路 hdu6582: 给一个图,问最少删除边权多少的边后,最短路长度增加 分析 边不能重复选这个条件可以想到边权为1,跑最大流,所以我们可 ...

  10. 在ts+vue中实现前端批量下载打包二维码

    ---恢复内容开始--- 一.插件安装 首先是插件的安装与引入,这里我们用的是qrcode的这个插件,直接使用npm install qrcodejs2安装即可,但是这里要注意,如果你用的是ts进行开 ...