原版地址:http://cs231n.github.io/convolutional-networks/

知乎翻译地址:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit

1 卷积层

(1)理解卷积层

按照卷积的观点看,卷积层由若干卷积核(滤波器)组成,核的参数待学习,将卷积核在输入上滑动相乘,得到的输出称为激活图。假设输入数据体的尺寸为。4个超参数为:滤波器的数量,滤波器的空间尺寸,步长,零填充数量。则输出数据体的尺寸为 ,其中: ,

按照神经元的观点看,卷积层中神经元的一个深度切片是共享参数的,并且它们只连接到输入的一部分(称为感受野),每个神经元突触的权重就是滤波器。不同深度上的神经元是不共享参数的。也就是说,同一个深度切面上的所有神经元都学习同样的特征,不同深度上的神经元学习不同的特征。由于图像具有平移不变性,因此共享参数是合理的,处于同一深度切面上的神经元是在图像不同位置上检测相同的特征。

(2)实现

普通实现,矩阵乘法实现。详细见https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit

2 pooling层

pooling层也有一个滑动的滤波器,但是不含参数,只是对输入做降采样,通常是取窗口内的最大值操作。

3 全连接层转化成卷积层

全连接层可以看作卷积层,这种转化的好处是可以用一次前向传播对更大图像的不同位置打分,而如果不做这种转化,就需要输入在大图像上不同位置滑动,经过多次前向传播,才能获得不同位置的打分。

4 结构

常见的卷积网络结构为:INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

5 层结构及超参数的设置规律

详见https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit

cs231n--详解卷积神经网络的更多相关文章

  1. 详解卷积神经网络(CNN)

    详解卷积神经网络(CNN) 详解卷积神经网络CNN 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全 ...

  2. 详解卷积神经网络(CNN)在语音识别中的应用

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老 ...

  3. 『cs231n』卷积神经网络的可视化与进一步理解

    cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...

  4. Andrej Karpathy | 详解神经网络和反向传播(基于 micrograd)

    只要你懂 Python,大概记得高中学过的求导知识,看完这个视频你还不理解反向传播和神经网络核心要点的话,那我就吃鞋:D Andrej Karpathy,前特斯拉 AI 高级总监.曾设计并担任斯坦福深 ...

  5. 用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

    『cs231n』卷积神经网络的可视化与进一步理解 深度学习小白——卷积神经网络可视化(二) TensorBoard--TensorFlow可视化 原文地址:http://blog.csdn.net/h ...

  6. 【cs231n】卷积神经网络

    较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...

  7. 『cs231n』循环神经网络RNN

    循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的 ...

  8. 『cs231n』卷积神经网络工程实践技巧_下

    概述 计算加速 方法一: 由于计算机计算矩阵乘法速度非常快,所以这是一个虽然提高内存消耗但是计算速度显著上升的方法,把feature map中的感受野(包含重叠的部分,所以会加大内存消耗)和卷积核全部 ...

  9. 『cs231n』卷积神经网络工程实践技巧_上

    概述 数据增强 思路:在训练的时候引入干扰,在测试的时候避免干扰. 翻转图片增强数据. 随机裁切图片后调整大小用于训练,测试时先图像金字塔制作不同尺寸,然后对每个尺寸在固定位置裁切固定大小进入训练,最 ...

随机推荐

  1. c++学习书籍推荐《清华大学计算机系列教材:数据结构(C++语言版)(第3版)》下载

    百度云及其他网盘下载地址:点我 编辑推荐 <清华大学计算机系列教材:数据结构(C++语言版)(第3版)>习题解析涵盖验证型.拓展型.反思型.实践型和研究型习题,总计290余道大题.525道 ...

  2. 20141126-DotNetStack

  3. MyBatis简单使用方式总结

    MyBatis简单使用方式总结 三个部分来理解: 1.对MyBatis的配置部分 2.实体类与映射文件部分 3.使用部分 对MyBatis的配置部分: 1.配置用log4J显式日志 2.导入包的别名 ...

  4. ZIP:ZipEntry

    ZipEntry: /* 此类用于表示 ZIP 文件条目. */ ZipEntry(String name) :使用指定名称创建新的 ZIP 条目. ZipEntry(ZipEntry e) :使用从 ...

  5. Spring 动态创建并切换数据源

    公司要求后端项目可以进行动态创建并切换数据源,看了网上很多例子大多数使用的都是Spring内置的AbstractRoutingDataSource进行的,使用此方法不是不行但是有诸多缺陷,比如切换时需 ...

  6. SpringBoot基于数据库实现简单的分布式锁

    本文介绍SpringBoot基于数据库实现简单的分布式锁. 1.简介 分布式锁的方式有很多种,通常方案有: 基于mysql数据库 基于redis 基于ZooKeeper 网上的实现方式有很多,本文主要 ...

  7. Day1 -Python program

    采用python 3.5 用PyCharm编译 第一串代码 print ("hello,world!") 练习1 输入一个用户名和密码,如果输入正确,就欢迎登陆,否则就显示错误. ...

  8. 个人永久性免费-Excel催化剂功能第51波-聚光灯功能,长宽工作表不看错位使用

    Excel的聚光灯功能,笔者是有点看不上,也曾经写文吐槽过这些类似的功能的实用性,但现实可能真的很多小白很需要,大家Excel水平参差不齐,大量的不规范做表习惯,致使此功能使用场景仍然非常广阔.很怀疑 ...

  9. 带新手玩转MVC——不讲道理就是干(上)

    带新手玩转MVC——不讲道理就是干(上) 前言:这几天更新了几篇博客,都是关于Servlet.JSP的理解,后来又写了两种Web开发模式,发现阅读量还可以,说明JSP还是受关注的,之前有朋友评论说JS ...

  10. Jenkins-slave分布式环境构建与并行WebUi自动化测试项目

    前言 之前搭建过selenium grid的分布式环境,今天我们再来搭建一次Jenkins的分布式环境:jenkins-slave Jenkins的Master-Slave分布式架构主要是为了解决Je ...