覆盖的面积

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7985    Accepted Submission(s): 4038

Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.

 
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.

注意:本题的输入数据较多,推荐使用scanf读入数据.

 
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
 
Sample Input
2
5
1 1 4 2
1 3 3 7
2 1.5 5 4.5
3.5 1.25 7.5 4
6 3 10 7
3
0 0 1 1
1 0 2 1
2 0 3 1
 
Sample Output
7.63 0.00

题目大意:

求n个矩形重复覆盖的面积。

线段树求矩形交的经典题。

首先离散化还是要去重,即使是浮点数,我的去重离散化模板还是稳得住的。

其次线段树节点中的cov要理解好。

最后跟标准线段树可以有些不同的,毕竟query永远是全部询问。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#define ll long long
#define maxn 1000 using namespace std; double t[maxn*+];//排序数组
double a[maxn*+];//原始数据
int b[maxn*+];//离散后的数据
double to[maxn*+];//离散后的数据到原数据的映射 struct tseg
{
int x1,x2,y;
int flag;//+1表示下边,-1表示上边
bool operator<(const tseg& b) const
{
return y<b.y;
}
};
tseg seg[maxn*+]; struct ttree
{
int l,r;
int cov;//cov是扫描线的重点 -1不确定 >=0完全覆盖次数
inline double len()
{
return to[r]-to[l];
}
};
ttree tree[maxn**+]; void pushup(int x)
{
if(tree[x].l+==tree[x].r)
return;
if(tree[x*].cov==tree[x*+].cov)
tree[x].cov=tree[x*].cov;
else
tree[x].cov=-;
} void pushdown(int x)
{
if(tree[x].l+==tree[x].r)
return;
if(tree[x].cov>=)
tree[x*].cov=tree[x*+].cov=tree[x].cov;
} void build(int x,int l,int r)
{
tree[x].l=l;
tree[x].r=r;
tree[x].cov=;
if(l+<r)
{
int mid=(l+r+)/;
build(x*,l,mid);
build(x*+,mid,r);
}
} void modify(int x,int l,int r,int op)
{
if(l<=tree[x].l&&r>=tree[x].r&&tree[x].cov>=)
{
tree[x].cov+=op;
}
else
{
pushdown(x);
int mid=(tree[x].l+tree[x].r+)/;
if(l<mid)
modify(x*,l,r,op);
if(r>mid)
modify(x*+,l,r,op);
pushup(x);
}
} //扫描线的query可以简略着写,因为一定是全部查询
double query(int x)
{
if(tree[x].cov>=)
return tree[x].len();
else if(tree[x].cov==||tree[x].cov==)
return ;
else
{
pushdown(x);
double ret=;
ret+=query(x*);
ret+=query(x*+);
return ret;
}
} int main()
{
int tt;
scanf("%d",&tt);
while(tt--)
{
int n;
scanf("%d",&n);
for(int i=;i<n*;i++)
{
scanf("%lf",a+i);
t[i]=a[i];
}
sort(t,t+n*);
int m=unique(t,t+n*)-t;//编号1..m
for(int i=;i<n*;i++)
{
b[i+]=lower_bound(t,t+m,a[i])-t+;
to[b[i+]]=a[i];
} for(int i=,j=;i<=n*;i+=,j+=)
{
seg[j]=(tseg){b[i],b[i+],b[i+],};
seg[j+]=(tseg){b[i],b[i+],b[i+],-};
}
sort(seg+,seg++n*); build(,,m);
double ans=;
for(int i=;i<=n*;i++)
{
if(i>=)
{
double len=query();
ans+=len*(to[seg[i].y]-to[seg[i-].y]);
}
modify(,seg[i].x1,seg[i].x2,seg[i].flag);
} printf("%.2f\n",ans);
}
return ;
}

hdu 1255 覆盖的面积 (扫描线求矩形交)的更多相关文章

  1. HDU 1255 覆盖的面积 ( 扫描线 + 离散 求矩阵大于k次面积并 )

    覆盖的面积 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  2. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  3. hdu 1255 覆盖的面积(求覆盖至少两次以上的面积)

    了校赛,还有什么途径可以申请加入ACM校队?  覆盖的面积 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. hdu 1255 覆盖的面积(线段树 面积 交) (待整理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.   In ...

  5. hdu 1255 覆盖的面积 (线段树处理面积覆盖问题(模板))

    http://acm.hdu.edu.cn/showproblem.php?pid=1255 覆盖的面积 Time Limit: 10000/5000 MS (Java/Others)    Memo ...

  6. HDU 1255 覆盖的面积(线段树:扫描线求面积并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 题目大意:给你若干个矩形,让你求这些矩形重叠两次及以上的部分的面积. 解题思路:模板题,跟HDU ...

  7. HDU - 1255 覆盖的面积 (线段树求面积交)

    https://cn.vjudge.net/problem/HDU-1255 题意 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 分析 求面积并的题:https://www.cnbl ...

  8. HDU 1255 覆盖的面积(线段树+扫描线)

    题目地址:HDU 1255 这题跟面积并的方法非常像,仅仅只是须要再加一个变量. 刚開始我以为直接用那个变量即可,仅仅只是推断是否大于0改成推断是否大于1.可是后来发现了个问题,由于这个没有下放,没延 ...

  9. HDU 1255 覆盖的面积 (扫描线 线段树 离散化 矩形面积并)

    题目链接 题意:中文题意. 分析:纯手敲,与上一道题目很相似,但是刚开始我以为只是把cnt>=0改成cnt>=2就行了,. 但是后来发现当当前加入的线段的范围之前 还有线段的时候就不行了, ...

随机推荐

  1. 【搞定 Java 并发面试】面试最常问的 Java 并发进阶常见面试题总结!

    本文为 SnailClimb 的原创,目前已经收录自我开源的 JavaGuide 中(61.5 k Star![Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识.觉得内容不错 ...

  2. 用Swoole+React 实现的聊天室

    前后端分离的项目,使用 Swoole+React 实现的聊天室,整个项目的框架结构可以进行参考,前端 react+react-redux+react-router+react-ant 等等,后台使用 ...

  3. DDCTF2019 的四道题wp

    MIsc:流量分析 这道题,在比赛的时候就差个key了,但是没想到要改高度,后来群里师傅说了下,就再试试, 导出来改高度. 导出来,把 把%5c(4)前面的hex删掉,改成png,就直接拿去那个img ...

  4. 2019-10-23:渗透测试,基础学习,DVWA,Medium和Hight级别sql注入

    VWA的Medium和Hight级别sql注入 一,Medium级 服务端代码 <?php if( isset( $_POST[ 'Submit' ] ) ) {      // Get inp ...

  5. LVM扩容之xfs文件系统

    LVM的基础请见:https://www.cnblogs.com/wxxjianchi/p/9698089.html 一.放大LV的容量.放大容量是由内而外来操作的. 1.设置新的lvm分区:用fdi ...

  6. Redis高可用演进(一)

    原文链接:http://www.cnblogs.com/chenty/p/5152878.html 最近整理Redis,对sentinel有了更深入的理解,特地总结如下 1.主从Redis 主从red ...

  7. 折腾笔记-计蒜客t1156AC记

    欢迎查看原题地址 此题思路(最初版): 暴力,得出最相近的,1000ms呢,除非数据超大,否则不超时. 说明: 爆搜,搜出结果,时间复杂度基本 $O(n^2)$ 注:本文所有时间(与空间)复杂度仅为估 ...

  8. Net Framework 4个Timer(网络收集整理)

    在 Visual Studio .NET 和 .NET Framework 中有四种计时器控件: (前边三种转载自 http://blog.csdn.net/aptentity/article/det ...

  9. c语言l博客作业03

    问题 答案 这个作业属于哪个课程 c语言程序设计ll 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/SE2019-3/homework/8727 我在这 ...

  10. spring cloud 之 -- eureka vs consul,该选择谁?

    0--前言 spring cloud的服务注册中心,该选择谁?在选择前,我们首先需要来了解下分布式的CAP定理: 所谓CAP,是指: Consistency:一致性:就是在分布式系统中的所有数据备份, ...