Romantic HDU - 2669(扩欧)
扩展欧几里得模板
扩展欧几里德算法——找出一对整数(x,y), 使得ax+by = gcd(a,b)。 注意, 这里的x和y不一定是正数, 也可能是负数或者0。 例如, gcd(6,15)=3, 6*3-15*1=3, 其中x=3, y=-1。 这个方程还有其他解, 如x=-2, y=1。
void gcd(int a, int b, int& d, int &x, int &y)
{
if(!b)
{
d = a;
x = 1;
y = 0;
}
else
{
gcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
用数学归纳法并不难证明该算法的正确性, 此处略去。 注意在递归调用时, x和y的顺序变
了, 而边界也是不难得出的: gcd(a,0)=1⋅a-0*0=a。 这样, 唯一需要记忆的是y-=x*(a/b), 哪
怕暂时不懂得其中的原因也不要紧。
上面求出了ax+by=gcd(a,b)的一组解(x1,y1), 那么其他解呢? 任取另外一组解(x2,y2),
则ax1+by1=ax2+by2( 它们都等于gcd(a,b)) , 变形得a(x1-x2)=b(y2-y1)。 假设gcd(a,b)=g, 方程
左右两边同时除以g, 得a'(x1-x2)=b' (y2-y1), 其中a'=a/g, b'=b/g。 注意, 此时a'和b'互素,
因此x1-x2一定是b'的整数倍。 设它为kb', 计算得y2-y1=ka'。 注意, 上面的推导过程并没有用
到“ax+by的右边是什么”, 因此得出如下结论。
即:设a, b, c为任意整数。 若方程ax+by=c的一组整数解为(x0,y0), 则它的任
意整数解都可以写成(x0+kb', y0-ka'), 其中a'=a/gcd(a,b), b'=b/gcd(a,b), k取任意整数。
以上内容均参考自刘汝佳的《算法竞赛入门经典》
题目代码及讲解
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
void gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if(!b)
{
d = a;
x = 1;
y = 0;
}
else
{
gcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
int main()
{
std::ios::sync_with_stdio(false);
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
LL a, b;
LL x, y;
while(cin >> a >> b)
{
LL x, y, d;
gcd(a, b, d, x, y); //在这里产生一组解
if(d != 1) //要满足题目所给的等式,就必须要求a, b的最大公约数为1
cout << "sorry" << endl;
else
{
while(x < 0)
{
x += b / 1; //它的任意整数解都可以写成(x0+kb', y0-ka'),直到x不为负数为止
y -= a / 1;
}
cout << x << " " << y << endl;
}
}
}
Romantic HDU - 2669(扩欧)的更多相关文章
- hdu 2669(扩展欧几里得)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 2669 扩展欧几里得(裸)
#include<stdio.h> #include<iostream> #define ll __int64 ll gcd(ll a,ll b,ll &x,ll &a ...
- hdu 2669 Romantic
Romantic Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- 【POJ】2115 C Looooops(扩欧)
Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
- 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]
传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...
- 【洛谷】【扩欧】P1516 青蛙的约会
[题目描述] 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有 ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- CF1182F Maximum Sine【类欧,扩欧】
题目链接:洛谷 题目描述:求整数$x\in [a,b]$使得$|2px \ mod \ 2q-q|$最小,如果有多个$x$输出最小的. 数据范围:$1\leq a,b,p,q\leq 10^9$ 第一 ...
- HDU 2669 Romantic (扩展欧几里得定理)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- 【RabbitMQ】一文带你搞定RabbitMQ死信队列
本文口味:爆炒鱿鱼 预计阅读:15分钟 一.说明 RabbitMQ是流行的开源消息队列系统,使用erlang语言开发,由于其社区活跃度高,维护更新较快,性能稳定,深得很多企业的欢心(当然,也包括我 ...
- python介绍、安装及相关语法、python运维、编译与解释
1.python介绍 Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/)是一种广泛使用的解释型.高级编程.通用型编程语言,由吉多.范罗苏姆创造,第一版发布于1991年.可以视 ...
- 能访问的谷歌 http://209.116.186.231/
能访问的谷歌 http://209.116.186.231/
- 通过windug判断某个模块导致程序不能退出。
1.windug附加进程. 2.~* kb 3.看堆栈
- 洛谷P4994 终于结束的起点 题解
求赞,求回复,求关注~ 题目:https://www.luogu.org/problemnew/show/P4994 这道题和斐波那契数列的本质没有什么区别... 分析: 这道题应该就是一个斐波那契数 ...
- DML语言DDL
DML(data manipulation language): 它们是SELECT.UPDATE.INSERT.DELETE,就象它的名字一样,这4条命令是用来对数据库里的数据进行操作的语言 . D ...
- SpringMVC面试题:什么是Servlet?
一.什么是servlet? servlet是一个Java编写的程序,此程序是基于http协议的,在服务器端(如Tomcat)运行的,是按照servlet规范编写的一个Java类.客户端发送请求至服务器 ...
- MapReduce之提交job源码分析 FileInputFormat源码解析
MapReduce之提交job源码分析 job 提交流程源码详解 //runner 类中提交job waitForCompletion() submit(); // 1 建立连接 connect(); ...
- Git学习笔记 (二)
Git学习笔记(二) 突然发现,学习新知识新技能,都得经常温故使用,这样才能日益精进.最近学习的Git是因为加入了课题组,在学习做一些后台,由于后台开发会牵扯到多人开发,所以学会Git这一代码管理工具 ...
- linux初学者-squid代理篇
linux初学者-squid代理篇 Squid代理服务器是一种缓存服务器,一般分为正向代理和反向代理. 1.正向代理 客户端因为网络或者其他的问题,不能访问到一台Apache服务器,如果要访问到,则 ...