【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述:
Description:
.png)
Input
输入一个正整数N,代表有根树的结点数
Output
输出这棵树期望的叶子节点数。要求误差小于1e-9
Sample Input
1
Sample Output
1.000000000
HINT
1<=N<=10^9
思路:
一眼数学期望(毕竟题目里都已经说了),那期望是什么呢???
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
\[\text{——百度百科}
\]

那这道题目的期望就是\(\text{有n个节点的树的}\frac{\text{叶子节点总个数}}{树的个数}\)了。
那我们康康这里面有什么不为人知的规律吧:

树的个数就是\(Cat_n\)!!!
叶子节点总个数就是\(Cat_{n-1}\times n\)!!!
发现没???
那柿子就是\(\frac{Cat_{n-1}\times n}{Cat_n}\)
当然直接这么做是不行的,你需要把它化简成\(\frac{n^2 + n}{ 4n - 2}\)
代码:
int main()
{
cin >> n;
printf("%.9lf", (n * n + n) / (4 * n - 2)); //公式
return 0;
}
【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论的更多相关文章
- luogu P3978 [TJOI2015]概率论
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...
- 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论
题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- [洛谷P3978][TJOI2015]概率论
题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- luogu P3975 [TJOI2015]弦论 SAM
luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...
随机推荐
- nginx篇中级用法之反向代理(七层调度)
环境: 两台后端web,一台代理服务器 web1:eth0:192.168.2.100/24 httpd做一个web web2:eth0:192.168.2.200/24 httpd做一个we ...
- NOIP模拟 19
最近试考的脑壳疼 晚上还有一场555 T1 count 研究性质题. 研究好了AC,研究不明白就没头绪 首先枚举n的因子d 其次发现因为是树,所以如果合法,贡献只能是1 然后发现如果合法,一定是一棵一 ...
- ie浏览器兼容性的入门解决方案
IE浏览器的兼容性素来是令人头疼的问题,大名鼎鼎的FUCK-IE不是浪得虚名的. 这里使用的解决方案是HACK,具体原理就是针对不同的浏览器写不同的HTML.CSS样式,从而使各种浏览器达到一致的渲染 ...
- day5-列表专区
list 列表.类li = [1, 12, 9, "age", ["88", ["19", 10], "方法"], &q ...
- 用c语言打印一个三角形
#define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h&g ...
- PHP 在Swoole中使用双IoC容器实现无污染的依赖注入
简介: 容器(container)技术(可以理解为全局的工厂方法), 已经是现代项目的标配. 基于容器, 可以进一步实现控制反转, 依赖注入. Laravel 的巨大成功就是构建在它非常强大的IoC容 ...
- nyoj 51-管闲事的小明(遍历,比较)
51-管闲事的小明 内存限制:64MB 时间限制:4000ms Special Judge: No accepted:9 submit:20 题目描述: 某校大门外长度为L的马路上有一排树,每两棵相邻 ...
- 领扣(LeetCode)七进制数 个人题解
给定一个整数,将其转化为7进制,并以字符串形式输出. 示例 1: 输入: 100 输出: "202" 示例 2: 输入: -7 输出: "-10" 注意: 输入 ...
- 《JAVA 程序员面试宝典(第四版)》之传递与引用篇
废话开场白 这个周末突然很想创业,为什么呢?原因很简单,我周围的同学或者说玩的比较好的朋友都发达了,前一个月和一个两年前还睡在一张床上的朋友,他现在已经在深圳买房买车了,没错是在深圳买 ...
- python:爬虫0
什么是网页爬虫,也叫网页蜘蛛.把互联网比作一个蜘蛛网,有好多节点,这个蜘蛛在网上爬来爬去,对对网页中的每个关键字进行建立索引,然后建立索引数据库,经过复杂的排序算法后,这些算法的结果将按照相关度的高低 ...