一、HDFS基本命令

  1.创建目录:-mkdir

[jun@master ~]$ hadoop fs -mkdir /test
[jun@master ~]$ hadoop fs -mkdir /test/input

  2.查看文件列表:-ls

[jun@master ~]$ hadoop fs -ls /
Found items
drwxr-xr-x - jun supergroup -- : /test
[jun@master ~]$ hadoop fs -ls /test
Found items
drwxr-xr-x - jun supergroup -- : /test/input

  3.上传文件到HDFS

  在/home/jun下新建两个文件jun.dat和jun.txt

  (1)使用-put将文件从本地复制到HDFS集群

[jun@master ~]$ hadoop fs -put /home/jun/jun.dat /test/input/jun.dat

  (2)使用-copyFromLocal将文件从本地复制到HDFS集群

[jun@master ~]$ hadoop fs -copyFromLocal -f /home/jun/jun.txt  /test/input/jun.txt

  (3)查看是否复制成功

[jun@master ~]$ hadoop fs -ls /test/input
Found items
-rw-r--r-- jun supergroup -- : /test/input/jun.dat
-rw-r--r-- jun supergroup -- : /test/input/jun.txt

  4.下载文件到本地

  (1)使用-get将文件从HDFS集群复制到本地

[jun@master ~]$ hadoop fs -get /test/input/jun.dat /home/jun/jun1.dat

  (2)使用-copyToLocal将文件从HDFS集群复制到本地

[jun@master ~]$ hadoop fs -copyToLocal /test/input/jun.txt /home/jun/jun1.txt

  (3)查看是否复制成功

[jun@master ~]$ ls -l /home/jun/
total
drwxr-xr-x. jun jun Jul : Desktop
drwxr-xr-x. jun jun Jul : Documents
drwxr-xr-x. jun jun Jul : Downloads
drwxr-xr-x. jun jun Jul : hadoop
drwxrwxr-x. jun jun Jul : hadoopdata
-rw-r--r--. jun jun Jul : jun1.dat
-rw-r--r--. jun jun Jul : jun1.txt
-rw-rw-r--. jun jun Jul : jun.dat
-rw-rw-r--. jun jun Jul : jun.txt
drwxr-xr-x. jun jun Jul : Music
drwxr-xr-x. jun jun Jul : Pictures
drwxr-xr-x. jun jun Jul : Public
drwxr-xr-x. jun jun Jul : Resources
drwxr-xr-x. jun jun Jul : Templates
drwxr-xr-x. jun jun Jul : Videos

  5.查看HDFS集群中的文件

[jun@master ~]$ hadoop fs -cat /test/input/jun.txt
This is the txt file.
[jun@master ~]$ hadoop fs -text /test/input/jun.txt
This is the txt file.
[jun@master ~]$ hadoop fs -tail /test/input/jun.txt
This is the txt file.

  6.删除HDFS文件

[jun@master ~]$ hadoop fs -rm /test/input/jun.txt
Deleted /test/input/jun.txt
[jun@master ~]$ hadoop fs -ls /test/input
Found items
-rw-r--r-- jun supergroup -- : /test/input/jun.dat

  7.也可以在slave节点上执行命令

[jun@slave0 ~]$ hadoop fs -ls /test/input
Found items
-rw-r--r-- jun supergroup -- : /test/input/jun.dat

  二、在Hadoop集群中运行程序

  Hadoop安装文件中有一个MapReduce示例程序,该程序用来计算圆周率pi的Java程序包,

  参数说明:pi(类名)、10(Map次数)、10(随机生成点的次数)

[jun@master ~]$ hadoop jar /home/jun/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8..jar pi
Number of Maps =
Samples per Map =
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Starting Job
// :: INFO client.RMProxy: Connecting to ResourceManager at master/192.168.1.100:
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1532226440522_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1532226440522_0001
// :: INFO mapreduce.Job: The url to track the job: http://master:18088/proxy/application_1532226440522_0001/
// :: INFO mapreduce.Job: Running job: job_1532226440522_0001
// :: INFO mapreduce.Job: Job job_1532226440522_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1532226440522_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
Job Finished in 88.689 seconds
Estimated value of Pi is 3.20000000000000000000

  最后可以看到,得到的结果近似为3.2。

HDFS基本命令与Hadoop MapReduce程序的执行的更多相关文章

  1. 使用Python实现Hadoop MapReduce程序

    转自:使用Python实现Hadoop MapReduce程序 英文原文:Writing an Hadoop MapReduce Program in Python 根据上面两篇文章,下面是我在自己的 ...

  2. 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行

    [TOC] 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行 程序源码 import java.io.IOException; import java.util. ...

  3. [python]使用python实现Hadoop MapReduce程序:计算一组数据的均值和方差

    这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时 ...

  4. 用Python语言写Hadoop MapReduce程序Writing an Hadoop MapReduce Program in Python

    In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python pr ...

  5. Python实现Hadoop MapReduce程序

    1.概述 Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令.脚本语言或其他编程语言来实现Mapper和 Reducer,从而充分利用Had ...

  6. Intellij idea开发Hadoop MapReduce程序

    1.首先下载一个Hadoop包,仅Hadoop即可. http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0 ...

  7. Hadoop MapReduce程序中解决第三方jar包问题方案

    hadoop怎样提交多个第三方jar包? 方案1:把所有的第三方jar和自己的class打成一个大的jar包,这种方案显然笨拙,而且更新升级比较繁琐. 方案2: 在你的project里面建立一个lib ...

  8. hadoop——在命令行下编译并运行map-reduce程序 2

     hadoop map-reduce程序的编译需要依赖hadoop的jar包,我尝试javac编译map-reduce时指定-classpath的包路径,但无奈hadoop的jar分布太散乱,根据自己 ...

  9. hadoop-初学者写map-reduce程序中容易出现的问题 3

    1.写hadoop的map-reduce程序之前所必须知道的基础知识: 1)hadoop map-reduce的自带的数据类型: Hadoop提供了如下内容的数据类型,这些数据类型都实现了Writab ...

随机推荐

  1. 原来python如此神奇

    一.优缺点分析 1.缺点: ① 数学问题的生成中只考虑了消除乘除法加括号的无效情况(例如3*(4+5)或(6*5)/2这样的计算),但没有去掉加减法加括号的无效情况(例如(4+(7+8))或(3-(2 ...

  2. 【django】ajax,上传文件,图片预览

    1.ajax 概述: AJAX = 异步 JavaScript 和 XML. AJAX 是一种用于创建快速动态网页的技术. 通过在后台与服务器进行少量数据交换,AJAX 可以使网页实现异步更新.这意味 ...

  3. Axure实现banner功能

    1.添加一个动态面板,添加上一张.下一张及当前banner对应的序号圆圈,如图所示: 当添加好元素后,实现自动轮播:点击[轮播图面板]页面:选中动态面板:右边添加事件编辑栏——属性——载入时——添加动 ...

  4. 【福利】离散&C++&硬件一笔记合集

    离散 C++ 硬件

  5. RabbitMQ原理介绍

    RabbitMQ历史 RabbitMQ消息系统是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现.在同步消息通讯的世界里有很多公开标准(如COBAR的IIO ...

  6. 开发电商平台用PHP语言和JAVA语言有什么区别?哪种语言更好?

    现在很多行业都通过电子商务拓展业务,所以商城系统开发成为很多企业的刚性需求.一般有一点技术基础的客户应该知道目前商城系统开发主流语言有两个,PHP和Java.那么很多客户朋友会纠结是选择哪个语言开发好 ...

  7. [LeetCode] 1137. N-th Tribonacci Number

    Description e Tribonacci sequence Tn is defined as follows: T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + ...

  8. java架构之路-(Redis专题)Redis的高性能和持久化

    上次我们简单的说了一下我们的redis的安装和使用,这次我们来说说redis为什么那么快和持久化数据 在我们现有的redis中(5.0.*之前的版本),Redis都是单线程的,那么单线程的Redis为 ...

  9. 微信小程序前端样式WXSS书写

    微信小程序前端样式WXSS书写 一. WXSS的简单介绍 WXSS(WeiXin Style Sheets)是一套样式语言,用于描述 WXML 的组件样式. 与 CSS 相比,WXSS 扩展的特性有: ...

  10. 初学 Spring MVC(基于 Spring in Action)

    Spring MVC(Model-View-Controller) 当你看到本博文时,我猜你可能正面临着我已探索过的问题. 同其他博主一样,我先按照书上详细的介绍一下 Spring MVC,也是为了自 ...