一、HDFS基本命令

  1.创建目录:-mkdir

[jun@master ~]$ hadoop fs -mkdir /test
[jun@master ~]$ hadoop fs -mkdir /test/input

  2.查看文件列表:-ls

[jun@master ~]$ hadoop fs -ls /
Found items
drwxr-xr-x - jun supergroup -- : /test
[jun@master ~]$ hadoop fs -ls /test
Found items
drwxr-xr-x - jun supergroup -- : /test/input

  3.上传文件到HDFS

  在/home/jun下新建两个文件jun.dat和jun.txt

  (1)使用-put将文件从本地复制到HDFS集群

[jun@master ~]$ hadoop fs -put /home/jun/jun.dat /test/input/jun.dat

  (2)使用-copyFromLocal将文件从本地复制到HDFS集群

[jun@master ~]$ hadoop fs -copyFromLocal -f /home/jun/jun.txt  /test/input/jun.txt

  (3)查看是否复制成功

[jun@master ~]$ hadoop fs -ls /test/input
Found items
-rw-r--r-- jun supergroup -- : /test/input/jun.dat
-rw-r--r-- jun supergroup -- : /test/input/jun.txt

  4.下载文件到本地

  (1)使用-get将文件从HDFS集群复制到本地

[jun@master ~]$ hadoop fs -get /test/input/jun.dat /home/jun/jun1.dat

  (2)使用-copyToLocal将文件从HDFS集群复制到本地

[jun@master ~]$ hadoop fs -copyToLocal /test/input/jun.txt /home/jun/jun1.txt

  (3)查看是否复制成功

[jun@master ~]$ ls -l /home/jun/
total
drwxr-xr-x. jun jun Jul : Desktop
drwxr-xr-x. jun jun Jul : Documents
drwxr-xr-x. jun jun Jul : Downloads
drwxr-xr-x. jun jun Jul : hadoop
drwxrwxr-x. jun jun Jul : hadoopdata
-rw-r--r--. jun jun Jul : jun1.dat
-rw-r--r--. jun jun Jul : jun1.txt
-rw-rw-r--. jun jun Jul : jun.dat
-rw-rw-r--. jun jun Jul : jun.txt
drwxr-xr-x. jun jun Jul : Music
drwxr-xr-x. jun jun Jul : Pictures
drwxr-xr-x. jun jun Jul : Public
drwxr-xr-x. jun jun Jul : Resources
drwxr-xr-x. jun jun Jul : Templates
drwxr-xr-x. jun jun Jul : Videos

  5.查看HDFS集群中的文件

[jun@master ~]$ hadoop fs -cat /test/input/jun.txt
This is the txt file.
[jun@master ~]$ hadoop fs -text /test/input/jun.txt
This is the txt file.
[jun@master ~]$ hadoop fs -tail /test/input/jun.txt
This is the txt file.

  6.删除HDFS文件

[jun@master ~]$ hadoop fs -rm /test/input/jun.txt
Deleted /test/input/jun.txt
[jun@master ~]$ hadoop fs -ls /test/input
Found items
-rw-r--r-- jun supergroup -- : /test/input/jun.dat

  7.也可以在slave节点上执行命令

[jun@slave0 ~]$ hadoop fs -ls /test/input
Found items
-rw-r--r-- jun supergroup -- : /test/input/jun.dat

  二、在Hadoop集群中运行程序

  Hadoop安装文件中有一个MapReduce示例程序,该程序用来计算圆周率pi的Java程序包,

  参数说明:pi(类名)、10(Map次数)、10(随机生成点的次数)

[jun@master ~]$ hadoop jar /home/jun/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8..jar pi
Number of Maps =
Samples per Map =
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Wrote input for Map #
Starting Job
// :: INFO client.RMProxy: Connecting to ResourceManager at master/192.168.1.100:
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1532226440522_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1532226440522_0001
// :: INFO mapreduce.Job: The url to track the job: http://master:18088/proxy/application_1532226440522_0001/
// :: INFO mapreduce.Job: Running job: job_1532226440522_0001
// :: INFO mapreduce.Job: Job job_1532226440522_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1532226440522_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
Job Finished in 88.689 seconds
Estimated value of Pi is 3.20000000000000000000

  最后可以看到,得到的结果近似为3.2。

HDFS基本命令与Hadoop MapReduce程序的执行的更多相关文章

  1. 使用Python实现Hadoop MapReduce程序

    转自:使用Python实现Hadoop MapReduce程序 英文原文:Writing an Hadoop MapReduce Program in Python 根据上面两篇文章,下面是我在自己的 ...

  2. 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行

    [TOC] 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行 程序源码 import java.io.IOException; import java.util. ...

  3. [python]使用python实现Hadoop MapReduce程序:计算一组数据的均值和方差

    这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时 ...

  4. 用Python语言写Hadoop MapReduce程序Writing an Hadoop MapReduce Program in Python

    In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python pr ...

  5. Python实现Hadoop MapReduce程序

    1.概述 Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令.脚本语言或其他编程语言来实现Mapper和 Reducer,从而充分利用Had ...

  6. Intellij idea开发Hadoop MapReduce程序

    1.首先下载一个Hadoop包,仅Hadoop即可. http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0 ...

  7. Hadoop MapReduce程序中解决第三方jar包问题方案

    hadoop怎样提交多个第三方jar包? 方案1:把所有的第三方jar和自己的class打成一个大的jar包,这种方案显然笨拙,而且更新升级比较繁琐. 方案2: 在你的project里面建立一个lib ...

  8. hadoop——在命令行下编译并运行map-reduce程序 2

     hadoop map-reduce程序的编译需要依赖hadoop的jar包,我尝试javac编译map-reduce时指定-classpath的包路径,但无奈hadoop的jar分布太散乱,根据自己 ...

  9. hadoop-初学者写map-reduce程序中容易出现的问题 3

    1.写hadoop的map-reduce程序之前所必须知道的基础知识: 1)hadoop map-reduce的自带的数据类型: Hadoop提供了如下内容的数据类型,这些数据类型都实现了Writab ...

随机推荐

  1. 数据结构之二叉树篇卷一 -- 建立二叉树(With Java)

    一.定义二叉树节点类 package tree; public class Node<E> { public E data; public Node<E> lnode; pub ...

  2. mybatis-generator生成数据对象

    mybatis-generator生成数据对象 步骤一:在pom文件中添加build的插件 <build> <finalName>doudou</finalName> ...

  3. CSS 换行

    默认情况下,元素的属性是 white-space:normal:自动换行:(不把单词截断,会把单词看作一个整体) -----但是但是但是但是..当元素中的内容是一对没有空格的字符/数字时,超过容器宽度 ...

  4. HDU 1159——Common Subsequence(DP)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 题解 #include<iostream> #include<cstring> ...

  5. 使用 chart 部署 skywalking

    使用 chart 部署 skywalking 本文主要讲述的是如何使用 Helm Charts 将 SkyWalking 部署到 Kubernetes 集群中,相关文档可以参考skywalking-k ...

  6. 利用基本数据封装类(如:Integer,Float)等实现数据类型转换

    /** * 利用基本数据封装类进行数据类型转换 * @author dyh * */ public class TypeConversion { public static void main(Str ...

  7. ELK 学习笔记之 elasticsearch 版本控制

    版本控制: elasticsearch 版本控制: 内部版本控制 外部版本控制 内部版本控制: 内部版本会检查你提供的版本值和文档的版本值是否一致,如果不一致就报错,一致则可以更新. curl -XP ...

  8. JNDI-Injection-Exploit

    介绍 最近把自己之前写的JNDI注入利用工具改了一下push到了github,地址:https://github.com/welk1n/JNDI-Injection-Exploit,启动后这个工具开启 ...

  9. 程序员需要了解的硬核知识之CPU

    大家都是程序员,大家都是和计算机打交道的程序员,大家都是和计算机中软件硬件打交道的程序员,大家都是和CPU打交道的程序员,所以,不管你是玩儿硬件的还是做软件的,你的世界都少不了计算机最核心的 - CP ...

  10. django自带cache结合redis创建永久缓存

    0916自我总结 django自带cache结合redis创建永久缓存 1.redis库 1.安装redis与可视化操作工具 1.安装redis https://www.runoob.com/redi ...