题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245

题意:求f(n)=n/1+n/2.....n/n,其中n/i保留整数

显然一眼看不出什么规律。而且n有2e31直接暴力肯定要出事情

但是f=n/x这个函数很好关于y = x 对称对称点刚好是sqrt(n)

于是就简单了直接求sum+n/i (i*i<n && i >=1)

然后乘以2,再减去i*i即可。

这个i*i表示的是什么呢,由于对称上半部份的值完全可以平移下来再减去i个i(这时候的i是临界于sqrt(n)整数点)

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
using namespace std; int main() {
int t , ans = 0;
long long n;
scanf("%d" , &t);
while(t--) {
ans++;
scanf("%lld" , &n);
long long sum = 0;
int i;
for(i = 1 ; (long long)i * i <= n ; i++)
sum += n / i;
sum *= 2;
sum -= (i - 1) * (i - 1);
printf("Case %d: %lld\n" , ans , sum);
}
return 0;
}

lightoj 1245 Harmonic Number (II)(简单数论)的更多相关文章

  1. LightOJ 1245 Harmonic Number (II)(找规律)

    http://lightoj.com/volume_showproblem.php?problem=1245 G - Harmonic Number (II) Time Limit:3000MS    ...

  2. LightOJ - 1245 - Harmonic Number (II)(数学)

    链接: https://vjudge.net/problem/LightOJ-1245 题意: I was trying to solve problem '1234 - Harmonic Numbe ...

  3. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

  4. LightOJ 1245 - Harmonic Number (II)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:仿照上面那题他想求这么个公式的数.但是递归太慢啦.让你找公式咯. ...

  5. LightOJ 1245 Harmonic Number (II) 水题

    分析:一段区间的整数除法得到的结果肯定是相等的,然后找就行了,每次是循环一段区间,暴力 #include <cstdio> #include <iostream> #inclu ...

  6. LightOJ - 1245 Harmonic Number (II) 求同值区间的和

    题目大意:对下列代码进行优化 long long H( int n ) {    long long res = 0;    for( int i = 1; i <= n; i++ )      ...

  7. 1245 - Harmonic Number (II)(规律题)

    1245 - Harmonic Number (II)   PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 3 ...

  8. LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

  9. 1245 - Harmonic Number (II)---LightOJ1245

    http://lightoj.com/volume_showproblem.php?problem=1245 题目大意:一个数n除以1到n之和 分析:暴力肯定不行,我们可以先求1~sqrt(n)之间的 ...

随机推荐

  1. mule发布调用webservice

    mule发布webservice 使用mule esb消息总线发布和调用webservice都非常精简,mule包装了所有操作,你只需要拖控件配置就可以,下面讲解mule发布: 1.下面是flow,h ...

  2. JavaFX 选择文件 导入Excel文件并解析

    FXML 控制器 : @FXML public void selectExcel(MouseEvent event) { FileChooser fileChooser = new FileChoos ...

  3. nginx基本运维及常用配置

    nginx基本运维及常用配置 ========================================================== 基本运维 nginx 的启动 nginx -c /p ...

  4. Spring Cloud 之 Stream.

    一.简介 Spring Cloud Stream 是一个用来为微服务应用构建消息驱动能力的框架. Spring Cloud Stream 为一些供应商的消息中间件产品(目前集成了 RabbitMQ 和 ...

  5. 最基础的 ant build 脚本

    最基础的 ant build 脚本,根据项目,自行进行修改 <?xml version="1.0" encoding="UTF-8" ?> < ...

  6. [趣学程序]java的常用类之String

    java基础之常用类 String类 String表示字符串,所谓字符串,就是一连串的字符,是java中最常用的类之一. String是不可变类,一旦String对象被创建,包含在对象中的字符序列(内 ...

  7. springboot整合websocket原生版

    目录 HTTP缺点 HTTP websocket区别 websocket原理 使用场景 springboot整合websocket 环境准备 客户端连接 加入战队 微信公众号 主题 HTTP请求用于我 ...

  8. DataPipeline丨DataOps的组织架构与挑战

    作者:DataPipeline CEO 陈诚 前两周,我们分别探讨了“数据的资产负债表与现状”及“DataOps理念与设计原则”.接下来,本文会在前两篇文章的基础上继续探讨由DataOps设计原则衍生 ...

  9. (十二)c#Winform自定义控件-分页控件

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  10. 移动开发-UI设计

        UI:手机的用户界面 UI物理版:手机实际的屏幕像素 UI设计版:我们截屏的手机界面在ps中去量,发现的尺寸 UI放大版:手机的尺寸等比放大1.5倍得出的分辨率   响应式布局 原由:窗体缩小 ...