【DP合集】tree-knapsack
Description
给出一个 N 个节点的有根树,点编号 1 ∼ N ,编号为 i 的点有权值 v i 。请选出一个包含树根的,点数 不超过 K 的连通块,使得点权和最大。
Input
输入的第一行有二个整数 N , K ( K ≤ N ≤ 3000) 。
接下来一行 N 个整数,第 i 个数描述编号为 i 的点的父亲编号,若该数为 0 ,则表示点 i 为树根。
接下来一行 N 个整数,第 i 个数描述编号为 i 的点的权值。
Output
输出一行一个整数,描述最大的点权和。保证答案不会超过 231−1231−1。
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<stdlib.h>
#include<cstring>
const int MAXN=;
using namespace std;
struct edge{
int first;
int next;
int to;
}a[MAXN*];
int n,m,num=,roof;
int dp[MAXN][MAXN];
int W[MAXN]; void cl(){
memset(dp,,sizeof(dp));
} void addedge(int from,int to){
a[++num].to=to;
a[num].next=a[from].first;
a[from].first=num;
} void dfs(int now,int fa,int w){
if(w==) return;
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
if(to==fa) continue;
for(int j=;j<=w;j++) dp[to][j]=dp[now][j];
dfs(to,now,w-);
for(int j=;j<=w;j++) dp[now][j]=max(dp[now][j],dp[to][j-]+W[to]);
}
} int main(){
cl();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
if(x==) roof=i;
else addedge(i,x),addedge(x,i);
}
for(int i=;i<=n;i++) scanf("%d",&W[i]);
dfs(roof,,m);
printf("%d",dp[roof][m-]+W[roof]);
}
【DP合集】tree-knapsack的更多相关文章
- dp合集 广场铺砖问题&&硬木地板
dp合集 广场铺砖问题&&硬木地板 很经典了吧... 前排:思想来自yali朱全民dalao的ppt百度文库免费下载 后排:STO朱全民OTZ 广场铺砖问题 有一个 W 行 H 列的广 ...
- 9.15 DP合集水表
9.15 DP合集水表 显然难了一些啊. 凸多边形的三角剖分 瞄了一眼题解. 和蛤蛤的烦恼一样,裸的区间dp. 设f[i][j]表示i~j的点三角剖分最小代价. 显然\(f[i][i+1]=0,f[i ...
- 9.14 DP合集水表
9.14 DP合集水表 关键子工程 在大型工程的施工前,我们把整个工程划分为若干个子工程,并把这些子工程编号为 1. 2. --. N:这样划分之后,子工程之间就会有一些依赖关系,即一些子工程必须在某 ...
- 【CJOJ2498】【DP合集】最长上升子序列 LIS
题面 Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列 ...
- CJOJ 【DP合集】最长上升序列2 — LIS2
题面 已知一个 1 ∼ N 的排列的最长上升子序列长度为 K ,求合法的排列个数. 好题(除了我想不出来我应该找不到缺点), 想一想最长上升子序列的二分做法, 接在序列后面或者替换. 所以对于每一个位 ...
- 【DP合集】m-knapsack
给出 n 个物品,第 i 个物品有重量 w i .现在有 m 个背包,第 i 个背包的限重为 c i ,求最少用几个背 包能装下所有的物品. Input 输入的第一行两个整数 n, m ( n ≤ 2 ...
- 【DP合集】背包 bound
N 种物品,第 i 种物品有 s i 个,单个重量为 w i ,单个价值为 v i .现有一个限重为 W 的背包,求能容 纳的物品的最大总价值. Input 输入第一行二个整数 N , W ( N ≤ ...
- 【DP合集】合并 union
给出一个 1 ∼ N 的序列 A ( A 1 , A 2 , ..., A N ) .你每次可以将两个相邻的元素合并,合并后的元素权值即为 这两个元素的权值之和.求将 A 变为一个非降序列,最少需要多 ...
- 【DP合集】棋盘 chess
给出一张 n × n 的棋盘,格子有黑有白.现在要在棋盘上放棋子,要求: • 黑格子上不能有棋子 • 每行每列至多只有一枚棋子 你的任务是求出有多少种合法的摆放方案.答案模 109+7109+7 . ...
随机推荐
- Spring Boot2 系列教程(三)理解 Spring Boot 项目中的 parent
前面和大伙聊了 Spring Boot 项目的三种创建方式,这三种创建方式,无论是哪一种,创建成功后,pom.xml 坐标文件中都有如下一段引用: <parent> <groupId ...
- 当React开发者初次走进React-Native的世界
RN千机变 1.技术体系问题 RN和React共用一套抽象层,相对于前端,RN其实更接近Node的运行环境 ReactNative =React +IOS +Android 看RN文档时,我会发现入门 ...
- Accuarcy and Precision
机器学习中,Accuarcy 和 Precision 有什么区别呢? Accuracy = (TP+TN)/TOTAL SAMPLES 也就是计算正确的样本数,占到总样本数的比率 定义是: 对于给定的 ...
- Spring Cloud(一):服务注册与发现
Spring Cloud是什么 Spring Cloud是一系列框架的有序集合.它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册.配置中心.消息总线.负载均 ...
- 关于Java网络编程
一,网络编程中两个主要的问题 一个是如何准确的定位网络上一台或多台主机,另一个就是找到主机后如何可靠高效的进行数据传输. 在TCP/IP协议中IP层主要负责网络主机的定位,数据传输的路由,由IP地址可 ...
- Android四大组件初识之Activity
一.Activity的生命周期 Activity生命周期是一系列方法调用.熟悉各个方法调用时间,我们在创建activity就能根据具体实现选择合适的方法覆盖. 1. 覆盖Activity的生命周期方 ...
- 计时器Chronometer
布局文件很简单 <Chronometer android:id="@+id/test" android:layout_width="wrap_content&quo ...
- Qt 纯属娱乐-模拟一个导航定位系统
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://www.cnblogs.com/lihuidashen/p/115397 ...
- apache ignite系列(四):持久化
ignite持久化与固化内存 1.持久化的机制 ignite持久化的关键点如下: ignite持久化可防止内存溢出导致数据丢失的情况: 持久化可以定制化配置,按需持久化; 持久化能解决在大量缓存数据情 ...
- 03 (H5*) Vue第三天
目录: 1:Vue-resource中的全局配置. 2:Vue动画2部曲 3:animate动画 4:钩子函数动画 5:组件三部曲,推荐使用template标签来创建组件模板 1:Vue-resour ...