二维、三维 Laplace 算子的极坐标表示
(1) 设 $(r,\theta)$ 是 $\bbR^2$ 的极坐标, 即 $$\bex x=r\cos\theta,\quad y=r\sin \theta. \eex$$ 证明 Laplace 算子 $\dps{\lap=\frac{\p^2}{\p x^2}+ \frac{\p^2}{\p y^2}}$ 可以表示为 $$\bex \lap u=u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}. \eex$$ (2) 设 $(r,\theta,\phi)$ 是 $\bbR^3$ 的极坐标, 即 $$\bex x=r\sin \theta\cos \phi,\quad y=r\sin \theta\sin \phi,\quad z=r\cos \theta. \eex$$ 证明 Laplace 算子 $\dps{\lap=\frac{\p^2}{\p x^2}+ \frac{\p^2}{\p y^2}+\frac{\p^2}{\p z^2}}$ 可以表示为 $$\bex \lap u=\frac{1}{r^2}\frac{\p}{\p r}\sex{r^2\frac{\p u}{\p r}} +\frac{1}{r^2\sin \theta} \frac{\p}{\p \theta}\sex{\sin \theta\frac{\p u}{\p \theta}} +\frac{1}{r^2\sin^2\theta}\frac{\p^2u}{\p \phi^2}. \eex$$
证明: (1) 由 $$\bex x_r=\cos \theta,\quad x_\theta=-r\sin \theta=-y,\quad y_r=\sin \theta,\quad y_\theta=r\cos \theta=x \eex$$ 知 $$\beex \bea u_r&=u_x\cos \theta+u_y\sin \theta,\\ u_{rr}&=u_{xx}\cos^2\theta +2u_{xy}\sin \theta\cos \theta +u_{yy}\sin^2\theta,\\ u_\theta&=-yu_x+xu_y,\\ u_{\theta\theta}&= -xu_x-y(-yu_{xx}+xu_{xy})\\ &\quad-yu_y+x(-yu_{xy}+xu_{yy})\\ &=y^2u_{xx}-2xyu_{xy} +x^2u_{yy}-(xu_x+yu_y). \eea \eeex$$ 而 $$\bex u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta} =u_{xx}+u_{yy}=\lap u. \eex$$ (2) 设 $\rho=r\sin \theta$, 则 $$\bex \ba{ll} x=\rho \cos \phi,&y=\rho\sin \phi,\\ z=r\cos \theta,&\rho=r\sin \theta. \ea \eex$$ 而由 (1), $$\beex \bea u_{xx}+u_{yy}&=u_{\rho\rho} +\frac{1}{\rho}u_\rho+\frac{1}{\rho^2}u_{\phi\phi},\\ u_{zz}+u_{\rho\rho} &=u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}. \eea \eeex$$ 两式相加得 $$\bee\label{3.2:1} \lap u=u_{rr}+\frac{1}{r}u_r+\frac{1}{\rho}u_\rho +\frac{1}{r^2}u_{\theta\theta}+\frac{1}{\rho^2}u_{\phi\phi}. \eee$$ 我们再计算 $u_\rho$ 如下: $$\bee\label{3.2:2} \bea u_\rho&=u_rr_\rho+u_\theta\theta_\rho\quad\sex{z=r\cos\theta,\ \rho=r\sin \theta,\quad u(z,\rho)=u(r,\theta)}\\ &=\frac{\rho}{r}u_r+\frac{z}{r^2}u_\theta\\ &=u_r\sin \theta+u_\theta\frac{\cos\theta}{r}. \eea \eee$$ 把 \eqref{3.2:2} 代入 \eqref{3.2:1}, 得 $$\beex \bea \lap u&=u_{rr}+\frac{1}{r}u_r+\frac{1}{r\sin\theta} \sex{u_r\sin \theta+u_\theta\frac{\cos \theta}{r}} +\frac{1}{r^2}u_{\theta\theta} +\frac{1}{r^2\sin^2\theta}u_{\phi\phi}\\ &=u_{rr}+\frac{2}{r}u_r+ \frac{1}{r^2\sin\theta}\cdot u_\theta\cos \theta +\frac{1}{r^2}u_{\theta\theta} +\frac{1}{r^2\sin^2\theta}u_{\phi\phi}\\ &=\frac{1}{r^2}(r^2u_{rr}+2ru_r) +\frac{1}{r^2\sin\theta} (u_\theta\cos \theta+u_{\theta\theta}\sin \theta) +\frac{1}{r^2\sin^2\theta}u_{\phi\phi}\\ &=\frac{1}{r^2}(r^2u_r)_r +\frac{1}{r^2\sin\theta}(u_\theta\sin \theta)_\theta +\frac{1}{r^2\sin^2\theta}u_{\phi\phi}. \eea \eeex$$
二维、三维 Laplace 算子的极坐标表示的更多相关文章
- 使用C语言实现二维,三维绘图算法(1)-透视投影
使用C语言实现二维,三维绘图算法(1)-透视投影 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其实想想 ...
- 使用C语言实现二维,三维绘图算法(3)-简单的二维分形
使用C语言实现二维,三维绘图算法(3)-简单的二维分形 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其 ...
- 使用C语言实现二维,三维绘图算法(2)-解析曲面的显示
使用C语言实现二维,三维绘图算法(2)-解析曲面的显示 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其 ...
- ARCGIS二维三维导航
在使用代码前需要先安装arcgis10.0 或者10.1都可以 不过本人建议初学者安装10.0比较容易安装.. 安装方式和二维三维地图的加载网上都有,就不在此一一赘述了. 先从基本的功能开 ...
- ARCGIS二维三维互动
当对三维模型进行操作时(如导航.平移)二维地图自动跟进. private void Synckron() { m_pGlobe = this._GlobeControl.Globe; m_pMap = ...
- ARCGIS二维三维放大缩小
private void ULZoomPan() { ESRI.ArcGIS.SystemUI.ICommand com = new ControlsGlobeFixedZoomOutCommand( ...
- ARCGIS二维三维平移
private void glZoomPan() { ESRI.ArcGIS.SystemUI.ICommand com = new ControlsGlobePanTool(); com.OnCre ...
- HDU 3404&POJ 3533 Nim积(二维&三维)
(Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...
- VC、OpenGL、ArcGIS Engine开发的二维三维结合的GIS系统
一.前言 众所周知,二维GIS技术发展了近四十年,伴随着计算机软硬件以及关系型数据库的飞速发展,二维GIS技术已日臻完善.在对地理信息的分析功能上有着无可比拟的优势.一些宏观的地理信息,一维的地理信息 ...
随机推荐
- Kafka设计解析(六)- Kafka高性能架构之道
本文从宏观架构层面和微观实现层面分析了Kafka如何实现高性能.包含Kafka如何利用Partition实现并行处理和提供水平扩展能力,如何通过ISR实现可用性和数据一致性的动态平衡,如何使用NIO和 ...
- Python距离放弃又近了Day02
今天,来时大概复习了上一天讲过的一些计算机基础和简单数据类型和if语句,第二天就来了循环,还是个while的死循环,突然想到还是电脑好,不管循环多少次,只要电脑不崩溃,就能一直精准的算下去,这就和人不 ...
- 《JAVA程序设计》_第三周学习总结
20175217吴一凡 一.IDEA学生免费版申请后续 收到这个邮件,就说明你申请成功了,点这里进去就行了 点击接受 在下一个界面登录你之前注册的账号绑定许可证就行了,重新登录你的账号就有了一年的许可 ...
- python中的struct模块的学习
由于TCP协议中的黏包现象的发生,对于最low的办法,每次发送之前让他睡一秒,然后在发送,可是这样真的太low了,而且太占用资源了. 黏包现象只发生在tcp协议中: 1.从表面上看,黏包问题主要是因为 ...
- exgcd
int exgcd(int a,int b,int &x,int &y){ if (b==0){ x=1,y=0; return a; } int d=exgcd(b,a%b,y,x) ...
- Redis常用数据结构
Redis常用数据结构包括字符串(strings),列表(lists),哈希(hashes),集合(sets),有序集合(sorted sets). redis的key最大不能超过512M,可通过re ...
- Linux内存管理 (15)页面迁移
专题:Linux内存管理专题 关键词:RMAP.页面迁移. 相关章节:反向映射RMAP.内存规整. 页面迁移的初衷是为NUMA系统提供一种将进程迁移到任意内存节点的能力,后来内存规整和内存热插拔场景都 ...
- iOS开发基础-九宫格坐标(3)之Xib
延续iOS开发基础-九宫格坐标(2)的内容,对其进行部分修改. 本部分采用 Xib 文件来创建用于显示图片的 UIView 对象. 一.简单介绍 Xib 和 storyboard 的比较: 1) X ...
- 技术趋势:React vs Vue vs Angular
React.Vue 和 Angular 这两年发展状况如何?2019 年哪个技术最值得学习? 前几天 Medium 上有一位作者发表了一篇关于 React.Vue 和 Angular 技术趋势的文章( ...
- AttributeError: Got AttributeError when attempting to get a value for field `password2` on serializer ` UserSerializer`...
Error_msg: AttributeError: Got AttributeError when attempting to get a value for field `password2` o ...