原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html

题意

所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离恰好是 m 的有几个。

$$n,m\leq 10^6$$

题解

首先显然 a 和 b 的具体值是没用的。

于是我们就可以直接计数:

枚举树链 ab 上除了 a 和 b 有几个节点,假设是 i 个节点,那么这种情况下的方案总数是多少?

首先,ab 路径上 i+1 条 [1,m] 的边的和是 m ,共有 $\binom{m-1}{i}$ 种边权的取值;

然后,ab 路径上共有 i 个点,方案数是从剩下的 n-2 个点种选出 i 个并排列,即 $\binom{n-2}i i!$ 。

然后,剩下的 n-2-i 条边每条都有 m 种取值,方案数是 $m^{n-2-i}$ 。

最后,考虑生成树的个数,用 prufer 序列的结论推一推就可以知道方案数是 $n^{n-3-i}(i+2)$ 。

所以答案是

$$\sum_{i=0}^{n-2} \binom{n-2}{i}\binom{m-1}{i}m^{n-2-i}n^{n-3-i}i!(i+2)$$

UPD(2019-03-04): 更新一下关于那个 prufer 编码推出的公式的证明:

prufer 编码有几个性质:

1. 假如是 n 个点,那么编码长度为 n-2 ,且每一个位置可以放 1~n 之间的任意数,每一个 prufer 编码与每一个树一一对应。

2. 假设树中一个点 x 的度是 d[x] ,那么在对应的 prufer 编码中,x 出现 d[x]-1 次。

假设我们有 n 个点,被分成了 k 个点集,每个点集里的点已经连通,不同点集之间的点两两无边,现在我们要在这个 n 个点 n-k 条边的基础上求生成树个数。设第 i 个点集包含的点数为 size[i] 。

那么,如果我们把这 k 个点集每一个点都看作一个点,做一个 k 个点的生成树,那么有 $k^{k-2}$ 种方案;但是由于这里的每一个点都是一个点集,所以假设它是点集 i,那么从他连出去的每一条边的属于集合i的端点,都有 size[i] 种选法。也就是说,对于一个 k 个点的 prufer 编码,假设在这个编码中,数字 i 出现了 c[i] 次,那么这个编码对应到原树上就会贡献 $\prod_{i=1}^k size[i] ^ {c[i]+1} $ 次。

我们把每一个 "c[i]+1" 中多出来的 1 提出,看作常量,我们来对于所有 prufer 编码求贡献总和:

$$\sum_{P是一个prufer编码}\ \ \ \ \ \prod_{i=1}^k size[i] ^ {c[i]}$$ 。

考虑到这个prufer编码的每一位选择第 i 个点集,就会对乘积有 $size[i]$ 的贡献,根据乘法分配律,我们可以得到上面的那个式子就是: $(\sum_{i=1}^k size[i])^{k-2} = n ^ {k-2}$ 。

再乘上之前提出的东西,所以答案就是:

$$(\sum_{i=1}^k size[i])^{k-2} \cdot \prod_{i=1}^k size[i] $$

本题要求的那个,只是这个模型的弱化版。至此已经可以解决这个问题了。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=1000005,mod=1e9+7;
int n,m,a,b;
int Fac[N],Inv[N];
int C(int n,int m){
if (m>n||m<0)
return 0;
return (LL)Fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
int Pow(int x,int y){
if (y<0)
return Pow(x,y+mod-1);
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void init(int n){
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=(LL)Fac[i-1]*i%mod;
Inv[n]=Pow(Fac[n],mod-2);
for (int i=n;i>=1;i--)
Inv[i-1]=(LL)Inv[i]*i%mod;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
int main(){
n=read(),m=read(),a=read(),b=read();
init(max(n,m));
int ans=0;
for (int i=0;i<=n-2;i++)
Add(ans,(LL)C(n-2,i)*C(m-1,i)%mod*Fac[i]%mod
*Pow(m,n-2-i)%mod*Pow(n,n-3-i)%mod*(i+2)%mod);
cout<<ans<<endl;
return 0;
}

  

Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码的更多相关文章

  1. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  2. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  3. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  4. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

  5. Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)

    题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...

  6. CF1109DSasha and Interesting Fact from Graph Theory(数数)

    题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...

  7. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  8. Codeforces 703D Mishka and Interesting sum 离线+树状数组

    链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...

  9. CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)

    思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...

随机推荐

  1. C++/cli中swtich处理命令行接收到的关键字

    QQ群友中有人提出这样一个问题: Swtich接受的是整形或枚举类型, 关键字多数是一个字符, 将string转换成char就应该可以, 所以我试着写了一下代码, 直接提取string的第一个字符, ...

  2. Python--Linux上安装Python

    Linux 上安装 Python 官网下载:https://www.python.org/downloads/ 本文安装包下载链接:https://pan.baidu.com/s/1uL2JyoY_g ...

  3. nginx设置目录浏览及解决中文乱码问题

    在Nginx下默认是不允许列出整个目录的.如需开启此功能,先打开nginx.conf文件,在location server 或 http段中加入相关参数. http { include mime.ty ...

  4. MongoDB 分片集群技术

    在了解分片集群之前,务必要先了解复制集技术! 1.1 MongoDB复制集简介 一组Mongodb复制集,就是一组mongod进程,这些进程维护同一个数据集合.复制集提供了数据冗余和高等级的可靠性,这 ...

  5. NOI-OJ 2.2 ID:1696 逆波兰表达式

    思路 很容易看出规律,一个运算符出现,其后就一定需要左值和右值,而左值和右值有可能还是运算符,这就需要继续递归.递归终止的条件就是遇到数字. 逆波兰表达式其实是构造成了一颗二叉树 例程 #includ ...

  6. MongoDB 3.6.9 集群搭建 - 切片+副本集

    1. 环境准备 在Mongo的官网下载Linux版本安装包,然后解压到对应的目录下:由于资源有限,我们采用Replica Sets + Sharding方式来配置高可用.结构图如下所示: 这里我说明下 ...

  7. div的默认position值是静态的static

    div的默认position值是静态的static,如果相对父元素使用Position:absolute的话,需要手动在父元素上添加Position.

  8. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  9. [物理学与PDEs]第2章习题5 正应力的平均值

    设流场中流体的应力张量为 ${\bf P}=(p_{ij})$. 试证明: 在以某点为中心, $r$ 为半径的球面 $S_r$ 上的法向应力分量的平均值, 在 $r\to 0$ 时的极限为该点正应力的 ...

  10. div宽高不确定,内容居中

    当div的宽高不确定时候,内容居中:// 加在父级div中 垂直居中:align-items:center; display: -webkit-flex;水平居中:justify-content:ce ...