原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html

题意

所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离恰好是 m 的有几个。

$$n,m\leq 10^6$$

题解

首先显然 a 和 b 的具体值是没用的。

于是我们就可以直接计数:

枚举树链 ab 上除了 a 和 b 有几个节点,假设是 i 个节点,那么这种情况下的方案总数是多少?

首先,ab 路径上 i+1 条 [1,m] 的边的和是 m ,共有 $\binom{m-1}{i}$ 种边权的取值;

然后,ab 路径上共有 i 个点,方案数是从剩下的 n-2 个点种选出 i 个并排列,即 $\binom{n-2}i i!$ 。

然后,剩下的 n-2-i 条边每条都有 m 种取值,方案数是 $m^{n-2-i}$ 。

最后,考虑生成树的个数,用 prufer 序列的结论推一推就可以知道方案数是 $n^{n-3-i}(i+2)$ 。

所以答案是

$$\sum_{i=0}^{n-2} \binom{n-2}{i}\binom{m-1}{i}m^{n-2-i}n^{n-3-i}i!(i+2)$$

UPD(2019-03-04): 更新一下关于那个 prufer 编码推出的公式的证明:

prufer 编码有几个性质:

1. 假如是 n 个点,那么编码长度为 n-2 ,且每一个位置可以放 1~n 之间的任意数,每一个 prufer 编码与每一个树一一对应。

2. 假设树中一个点 x 的度是 d[x] ,那么在对应的 prufer 编码中,x 出现 d[x]-1 次。

假设我们有 n 个点,被分成了 k 个点集,每个点集里的点已经连通,不同点集之间的点两两无边,现在我们要在这个 n 个点 n-k 条边的基础上求生成树个数。设第 i 个点集包含的点数为 size[i] 。

那么,如果我们把这 k 个点集每一个点都看作一个点,做一个 k 个点的生成树,那么有 $k^{k-2}$ 种方案;但是由于这里的每一个点都是一个点集,所以假设它是点集 i,那么从他连出去的每一条边的属于集合i的端点,都有 size[i] 种选法。也就是说,对于一个 k 个点的 prufer 编码,假设在这个编码中,数字 i 出现了 c[i] 次,那么这个编码对应到原树上就会贡献 $\prod_{i=1}^k size[i] ^ {c[i]+1} $ 次。

我们把每一个 "c[i]+1" 中多出来的 1 提出,看作常量,我们来对于所有 prufer 编码求贡献总和:

$$\sum_{P是一个prufer编码}\ \ \ \ \ \prod_{i=1}^k size[i] ^ {c[i]}$$ 。

考虑到这个prufer编码的每一位选择第 i 个点集,就会对乘积有 $size[i]$ 的贡献,根据乘法分配律,我们可以得到上面的那个式子就是: $(\sum_{i=1}^k size[i])^{k-2} = n ^ {k-2}$ 。

再乘上之前提出的东西,所以答案就是:

$$(\sum_{i=1}^k size[i])^{k-2} \cdot \prod_{i=1}^k size[i] $$

本题要求的那个,只是这个模型的弱化版。至此已经可以解决这个问题了。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=1000005,mod=1e9+7;
int n,m,a,b;
int Fac[N],Inv[N];
int C(int n,int m){
if (m>n||m<0)
return 0;
return (LL)Fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
int Pow(int x,int y){
if (y<0)
return Pow(x,y+mod-1);
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void init(int n){
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=(LL)Fac[i-1]*i%mod;
Inv[n]=Pow(Fac[n],mod-2);
for (int i=n;i>=1;i--)
Inv[i-1]=(LL)Inv[i]*i%mod;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
int main(){
n=read(),m=read(),a=read(),b=read();
init(max(n,m));
int ans=0;
for (int i=0;i<=n-2;i++)
Add(ans,(LL)C(n-2,i)*C(m-1,i)%mod*Fac[i]%mod
*Pow(m,n-2-i)%mod*Pow(n,n-3-i)%mod*(i+2)%mod);
cout<<ans<<endl;
return 0;
}

  

Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码的更多相关文章

  1. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  2. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  3. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  4. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

  5. Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)

    题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...

  6. CF1109DSasha and Interesting Fact from Graph Theory(数数)

    题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...

  7. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  8. Codeforces 703D Mishka and Interesting sum 离线+树状数组

    链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...

  9. CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)

    思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...

随机推荐

  1. 第六十五天 js操作

    1.闭包 // 函数的嵌套定义,定义在内部的函数都称之为 闭包 // 1.一个函数要使用另一个函数的局部变量 // 2.闭包会持久化包裹自身的函数的局部变量 // 3.解决循环绑定 function ...

  2. 安装 SIP 服务器

    SIP服务器: OpenSIPS(Open SIP S erver)是SIP服务器的一个成熟的开源实现.OpenSIPS不仅仅是一个SIP代理/路由器,因为它包含应用程序级别的功能.作为SIP服务器的 ...

  3. 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)

    [BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...

  4. Dynamic Rankings ZOJ - 2112(主席树+树状数组)

    The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...

  5. Windows编写的shell脚本,在linux上无法执行

    前两天由于要查一个数据库的binlog日志,经常用命令写比较麻烦,想着写一个简单的脚本,自动去刷一下数据库的binlog日志,就直接在windows上面写了,然后拷贝到linux中去运行,其实很简单的 ...

  6. CentOS 7.x下安装部署MySQL 8.0实施手册

    MySQL 8 正式版 8.0.11 已发布,官方表示 MySQL 8 要比 MySQL 5.7 快 2 倍,还带来了大量的改进和更快的性能! 一.  Mysql8.0版本相比之前版本的一些特性 1) ...

  7. linux在线安装JDK(1.8版本)

    在线下载JDK 命令: wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-sec ...

  8. django - 总结 - 跨域请求

    script ->jsonp跨域 浏览器的同源策略:不能跨越网站请求信息: XMLHttpRequests遵循这个规定. 因此ajax等基于XML的都不能进行跨站请求 而我们知道img,ifra ...

  9. webpack安装异常

    webpack中文指南:https://zhaoda.net/webpack-handbook/index.html 今天中午,我用   cnpm install   重新下载了一下项目的依赖,爆了一 ...

  10. (三)Java工程化--Git起步

    GIT学习参考:https://git-scm.com/book/zh/v2 版本控制 版本控制记录了一个或若干文件的历史变化,便于今后查阅,恢复. 三类版本控制系统 本地版本控制系统 RCS : 本 ...