原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html

题意

所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离恰好是 m 的有几个。

$$n,m\leq 10^6$$

题解

首先显然 a 和 b 的具体值是没用的。

于是我们就可以直接计数:

枚举树链 ab 上除了 a 和 b 有几个节点,假设是 i 个节点,那么这种情况下的方案总数是多少?

首先,ab 路径上 i+1 条 [1,m] 的边的和是 m ,共有 $\binom{m-1}{i}$ 种边权的取值;

然后,ab 路径上共有 i 个点,方案数是从剩下的 n-2 个点种选出 i 个并排列,即 $\binom{n-2}i i!$ 。

然后,剩下的 n-2-i 条边每条都有 m 种取值,方案数是 $m^{n-2-i}$ 。

最后,考虑生成树的个数,用 prufer 序列的结论推一推就可以知道方案数是 $n^{n-3-i}(i+2)$ 。

所以答案是

$$\sum_{i=0}^{n-2} \binom{n-2}{i}\binom{m-1}{i}m^{n-2-i}n^{n-3-i}i!(i+2)$$

UPD(2019-03-04): 更新一下关于那个 prufer 编码推出的公式的证明:

prufer 编码有几个性质:

1. 假如是 n 个点,那么编码长度为 n-2 ,且每一个位置可以放 1~n 之间的任意数,每一个 prufer 编码与每一个树一一对应。

2. 假设树中一个点 x 的度是 d[x] ,那么在对应的 prufer 编码中,x 出现 d[x]-1 次。

假设我们有 n 个点,被分成了 k 个点集,每个点集里的点已经连通,不同点集之间的点两两无边,现在我们要在这个 n 个点 n-k 条边的基础上求生成树个数。设第 i 个点集包含的点数为 size[i] 。

那么,如果我们把这 k 个点集每一个点都看作一个点,做一个 k 个点的生成树,那么有 $k^{k-2}$ 种方案;但是由于这里的每一个点都是一个点集,所以假设它是点集 i,那么从他连出去的每一条边的属于集合i的端点,都有 size[i] 种选法。也就是说,对于一个 k 个点的 prufer 编码,假设在这个编码中,数字 i 出现了 c[i] 次,那么这个编码对应到原树上就会贡献 $\prod_{i=1}^k size[i] ^ {c[i]+1} $ 次。

我们把每一个 "c[i]+1" 中多出来的 1 提出,看作常量,我们来对于所有 prufer 编码求贡献总和:

$$\sum_{P是一个prufer编码}\ \ \ \ \ \prod_{i=1}^k size[i] ^ {c[i]}$$ 。

考虑到这个prufer编码的每一位选择第 i 个点集,就会对乘积有 $size[i]$ 的贡献,根据乘法分配律,我们可以得到上面的那个式子就是: $(\sum_{i=1}^k size[i])^{k-2} = n ^ {k-2}$ 。

再乘上之前提出的东西,所以答案就是:

$$(\sum_{i=1}^k size[i])^{k-2} \cdot \prod_{i=1}^k size[i] $$

本题要求的那个,只是这个模型的弱化版。至此已经可以解决这个问题了。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=1000005,mod=1e9+7;
int n,m,a,b;
int Fac[N],Inv[N];
int C(int n,int m){
if (m>n||m<0)
return 0;
return (LL)Fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
int Pow(int x,int y){
if (y<0)
return Pow(x,y+mod-1);
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void init(int n){
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=(LL)Fac[i-1]*i%mod;
Inv[n]=Pow(Fac[n],mod-2);
for (int i=n;i>=1;i--)
Inv[i-1]=(LL)Inv[i]*i%mod;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
int main(){
n=read(),m=read(),a=read(),b=read();
init(max(n,m));
int ans=0;
for (int i=0;i<=n-2;i++)
Add(ans,(LL)C(n-2,i)*C(m-1,i)%mod*Fac[i]%mod
*Pow(m,n-2-i)%mod*Pow(n,n-3-i)%mod*(i+2)%mod);
cout<<ans<<endl;
return 0;
}

  

Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码的更多相关文章

  1. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  2. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  3. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  4. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

  5. Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)

    题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...

  6. CF1109DSasha and Interesting Fact from Graph Theory(数数)

    题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...

  7. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  8. Codeforces 703D Mishka and Interesting sum 离线+树状数组

    链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...

  9. CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)

    思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...

随机推荐

  1. 不同系统下的字长------typedef的意义

    int的字节长度是由CPU和操作系统编译器共同决定的, 一般情况下,主要是由操作系统决定,比如,你在64位AMD的机器上安装的是32位操作系统,那么,int默认是32位的:如果是64位操作系统,64位 ...

  2. 【XSY3141】哲学家 计算几何 线段树

    题目描述 有一个平面,最开始平面上没有任何点. 你要按顺序加入 \(n\) 个点,求加入每个点后有多少三角形严格包含原点(在边界上不算). \(n\leq 400000\),无重点. 题解 其实这题本 ...

  3. hdu 3480 Division(四边形不等式优化)

    Problem Description Little D is really interested in the theorem of sets recently. There’s a problem ...

  4. intellij 操作

    默认快捷键 ctrl+alt+l 格式化代码 alt+insert代码自动生成 代码生成 编辑框右键>generator>选择

  5. 深入理解JVM(4)——对象的创建和访问

    1.对象的创建 在语言层面上,创建对象(例如克隆,反序列化)通常仅仅是一个new关键字而已. 在虚拟机中,对象(文中讨论的对象限于普通 Java 对象,不包括数组和 Class 对象等)的创建过程如下 ...

  6. 连接SQL Server数据库

    SqlConnection来连接数据库,注意数据库目标的格式. using System.Data.SqlClient;//载入数据库命名空间 namespace WindowsFormsApplic ...

  7. elk中fliebeat的配置文件

    fliebeat----> kafka的配置文件 # cat filebeat.yml|egrep -v "^$|^#"|grep -v "^ #" fi ...

  8. webpack学习笔记——项目引入zepto及tap事件失效的解决

    先要npm下来zepto:npm install zepto 然后npm下来exports-loader和script-loader 配置如下: JavaScript // webpack.confi ...

  9. Kaldi nnet3的fastlstm与标准LSTM

    标准LSTM:             与标准LSTM相比,Kaldi的fastlstm对相同或类似的矩阵运算进行了合并.     # Component specific to 'projected ...

  10. bzoj2733 永无乡 splay树的启发式合并

    https://vjudge.net/problem/HYSBZ-2733 给一些带权点,有些点是互相连通的, 然后给出2种操作,在两点间加一条边,或者询问一个点所在的连通块内的第k小值的编号 并查集 ...