题意:略

怎样判断属于S,T集合。

如果从S出发到不了某点,该点出发也到不了T,那么割给那边都行。

如果S出发能到该点,该点出发也能到T,这种情况下dinic没结束。

只能从S到该点:只能分到S集。只能从该点到T,T集。

这题中两种都能分到时,假如S表示0,那贪心分到S。这样只要看它能不能到T,如果能到T,一定要选1,否则就选0.用类似SPFA的操作。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <cstring>
#include <map>
#include <queue>
#include <set>
#include <cassert>
#include <stack>
#include <bitset>
#define mkp make_pair
using namespace std;
const double EPS=1e-;
typedef long long lon;
const lon SZ=,SSZ=,APB=,one=,INF=0x7FFFFFFF,mod=;
int n,m,src[SZ][SZ],knum,arr[SZ],S=,T=;
int ans[SZ],mp[SZ][SZ],dep[SZ];
bool vst[SZ]; void init()
{
cin>>n>>m;
for(int i=;i<=m;++i)
{
int a,b;
cin>>a>>b;
src[a][b]=src[b][a]=;
}
cin>>knum;
for(int i=;i<=knum;++i)
{
int a,b;
cin>>a>>b;
ans[a]=arr[a]=b;
vst[a]=;
}
} void add(int u,int v,int w)
{
mp[u][v]=w;
} bool bfs()
{
memset(dep,,sizeof(dep));
dep[S]=;
queue<int> q;
q.push(S);
for(;q.size();)
{
int fr=q.front();
q.pop();
for(int i=;i<=T;++i)
{
if(!dep[i]&&mp[fr][i])
{
dep[i]=dep[fr]+;
q.push(i);
if(i==T)return ;
}
}
}
return ;
} int dinic(int x,int flow)
{
if(x==T)return flow;
else
{
int rem=flow;
for(int i=;i<=T&&rem;++i)
{
if(dep[i]==dep[x]+&&mp[x][i])
{
int tmp=dinic(i,min(rem,mp[x][i]));
if(!tmp)dep[i]=;
rem-=tmp;
mp[x][i]-=tmp,mp[i][x]+=tmp;
}
}
return flow-rem;
}
} void build(int x)
{
memcpy(mp,src,sizeof(src));
for(int i=;i<=n;++i)
{
if(vst[i])
{
if(arr[i]&(<<x))
{
add(i,T,INF);
add(T,i,);
}
else
{
add(S,i,INF);
add(i,S,);
}
}
else
{
// add(S,i,APB);
// add(i,S,0);
// add(i,T,APB);
// add(T,i,0);
}
}
} int v2[SZ]; void calc(int x)
{
memset(v2,,sizeof(v2));
queue<int> q;
for(int i=;i<=n;++i)
{
if(mp[i][T])v2[i]=,q.push(i);
}
for(;q.size();)
{
int fr=q.front();
q.pop();
for(int i=;i<=n;++i)
{
if(!v2[i]&&mp[i][fr])
{
v2[i]=;
q.push(i);
}
}
}
for(int i=;i<=n;++i)
{
//if(x==0)cout<<v2[i]<<endl;
if(v2[i]&&!vst[i])ans[i]|=<<x;
}
} void work()
{
for(int i=;i<;++i)
{
build(i);
int res=;
for(;bfs();)res+=dinic(S,INF);
//cout<<"res: "<<res<<endl;
calc(i);
}
for(int i=;i<=n;++i)
{
cout<<ans[i]<<endl;
}
} void release()
{
memset(vst,,sizeof(vst));
memset(src,,sizeof(src));
memset(ans,,sizeof(ans));
} int main()
{
std::ios::sync_with_stdio();
//freopen("d:\\1.txt","r",stdin);
//cout<<(1<<31)<<endl;
int casenum;
cin>>casenum;
//cout<<casenum<<endl;
for(int time=;time<=casenum;++time)
//for(int time=1;scanf(" %s",ch+1)!=EOF;++time)
{
init();
work();
release();
}
return ;
}

spoj839Optimal Marks的更多相关文章

  1. 【BZOJ-2400】Spoj839Optimal Marks 最小割 + DFS

    2400: Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 567  Solved: 202[Submit ...

  2. 贪心 Codeforces Round #301 (Div. 2) B. School Marks

    题目传送门 /* 贪心:首先要注意,y是中位数的要求:先把其他的都设置为1,那么最多有(n-1)/2个比y小的,cnt记录比y小的个数 num1是输出的1的个数,numy是除此之外的数都为y,此时的n ...

  3. 839. Optimal Marks - SPOJ

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  4. (CodeForces )540B School Marks 贪心 (中位数)

    Little Vova studies programming to p. Vova is very smart and he can write every test for any mark, b ...

  5. 图论(网络流):SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...

  6. CodeForces 540B School Marks(思维)

    B. School Marks time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  7. 【SPOJ839】Optimal Marks 网络流

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  8. The table name must be enclosed in double quotation marks or sqare bracket while accessing EXCEL by

      1  Preface DB Query Analyzer is presented by Master Gen feng, Ma from Chinese Mainland. It has Eng ...

  9. Codeforces831C Jury Marks

    C. Jury Marks time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. Go 初体验 - 闭包,数组,切片,锁

    我们先假设一个需求,创建一个数组,里面存放 0 - 99 的整数. 上代码: 输出: 然而并不是我们想要的结果,很多重复数值. 释义: 12行这个闭包函数对 i 的传递并非深拷贝,而是传递了变量指针, ...

  2. python之xml模块

    # XML 模块的操作参考链接 # http://www.cnblogs.com/yuanchenqi/articles/5732581.html

  3. Windows上IOCP Socket事件模型管理

     1.IOCP 2.使用IOCP 1)创建完成端口CreateIoCompletionPort: 2)向完成端口添加管理句柄与管理用户数据: 3)异步发送一个管理的事件请求: 4)开启工作线程来处理I ...

  4. Object类的wait方法带参数和notifyAll方法

    相当于sleep( 5000 ) , 效果一样:

  5. Deep Convolution Auto-encoder

    一.概念介绍 自编码器是一种执行数据压缩的网络架构,其中的压缩和解压缩功能是从数据本身学习得到的,而非人为手工设计的.自编码器的两个核心部分是编码器和解码器,它将输入数据压缩到一个潜在表示空间里面,然 ...

  6. 使用HTML meta no-cache标签来禁用缓存

    使用HTML meta no-cache标签来禁用缓存 如何完美滴使浏览器访问一个 HTML 页面时禁用缓存?在测试某个 SPA 项目时,发现更改后 Chrome 浏览器页面刷新还是使用之前的版本.经 ...

  7. redis 在 php 中的应用(Hash篇)

    本文为我阅读了 redis参考手册 之后结合 博友的博客 编写,注意 php_redis 和 redis-cli 的区别(主要是返回值类型和参数用法) Redis hash 是一个string类型的f ...

  8. hive的常见判断与抽样函数

    .If函数:if和case差不多,都是处理单个列的查询结果 语法: if(boolean testCondition, T valueTrue, T valueFalseOrNull) 返回值: T ...

  9. redis(一主两从三哨兵模式搭建)记录

    转自:http://www.cnblogs.com/fly-piglet/p/9836314.html 目的: 让看看这篇文章的的人能够知道:软件架构.软件的安装.配置.基本运维的操作.高可用测试.也 ...

  10. Java集合类学习笔记2

    二,具体的集合 集合类型 描述 ArrayList 一种可以动态增长和缩减的索引序列 LinkedList 一种可以在任何位置进行高效地插入和删除操作的有序序列 ArrayDeque 一种用循环数组实 ...