当然,在学习过程中也是参考了很多其他的资料,代码都是一行一行敲出来的。

一、将多个文件合并成一个文件,避免频繁的打开和关闭

 import sys

 for line in sys.stdin:
ss = line.strip().split('\t')
file_name = ss[0].strip()
file_context = ss[1].strip()
word_list = file_context.split(' ') word_set = set()
for word in word_list:
word_set.add(word) for word in word_set:
print '\t'.join([word, ''])

执行命令:就可以得到合并后的文件啦!!!

python convert.py input_tfidf_dir/ > merge_files.data 

tf-idf计算流程图:

二 、计算IDF的值:

map阶段:读取每一行

 import sys

 for line in sys.stdin:
ss = line.strip().split('\t')
file_name = ss[0].strip()
file_context = ss[1].strip()
word_list = file_context.split(' ') word_set = set()
for word in word_list:
word_set.add(word) for word in word_set:
print '\t'.join([word, ''])

reduce阶段:

 import sys
import math current_word = None
doc_cnt = 508
count_pool = []
sum = 0 for line in sys.stdin:
ss = line.strip().split('\t')
if len(ss) != 2:
continue word, val = ss
if current_word == None:
current_word = word
if current_word != word:
for count in count_pool:
sum += count idf_score = math.log(float(doc_cnt) / (float(sum) + 1))
print '\t'.join([current_word, str(idf_score)]) current_word = word
count_pool = []
sum = 0 count_pool.append((int(val))) for count in count_pool:
sum += count idf_score = math.log(float(doc_cnt) / (float(sum) + 1))
print '\t'.join([current_word, str(idf_score)])

三、计算TF的值:

 # 计算tf
# 读取合并后的数据
# 执行命令 cat merge_files.data | python map_tf.py mapper_func idf.data import sys word_dict = {}
idf_dict = {} # 读取计算的idf数据文件
def read_idf_file_func(idf_file_fd):
with open() as fd:
for line in fd:
ss = line.strip().split('\t')
if len(ss) != 2:
continue
token = ss[0].strip()
idf_score = ss[1].strip()
idf_dict[token] = float(idf_score)
return idf_dict # cat merge_files.data | python map_tf.py mapper_func
def mapper_func(idf_file_fd):
idf_dict = read_idf_file_func(idf_file_fd)
# 标准输入
for line in sys.stdin:
ss = line.strip().split('\t')
file_name = ss[0].strip()
file_context = ss[1].strip()
word_list = file_context.split(' ') for word in word_list:
if word not in word_dict:
word_dict[word] = 1
else:
word_dict[word] += 1 for k,v in word_dict.item():
if k not in idf_dict:
continue
print(file_name,k,v,idf_file_fd[k])
print(k,v) if __name__ == "__main__":
module = sys.modules[__name__]
func = getattr(module, sys.argv[1])
args = None
if len(sys.argv) > 1:
args = sys.argv[2:]
func(*args)

NLP相似度之tf-idf计算的更多相关文章

  1. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  2. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  3. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  4. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  5. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  6. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  7. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  8. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

  9. tf idf公式及sklearn中TfidfVectorizer

    在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的 ...

  10. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

随机推荐

  1. java,桶排序,冒泡排序,快速排序

    1.桶排序: 百度百科:桶排序 (Bucket sort)或所谓的箱排序,是一个排序算法,工作的原理是将数组分到有限数量的桶子里.每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排 ...

  2. 在Mac os 10.11 下编译Berkeley caffe

    安装各种补丁和组件,缺啥装啥. python 采用 2.7.13 最新版. 安装工具  homebrew , pip 很繁琐,但是没难度. 由于本人macbook pro不支持CUDA,所以不用安装. ...

  3. EF - Code First 开发方式

    概述: 本节介绍通过 Code First 开发建立新数据库. 借助 Code First 可以选择使用类的特性和属性执行配置,或者使用 XML 配置文件来配置,当然也可以使用 Fluent API ...

  4. thymeleaf下拉框从后台动态获取集合数据并回显选中

    今天遇到从后台集合中取出对象在前台页面下拉列表展示: <select name="signature" lay-search="" class=" ...

  5. json转换字符串

    在使用json模块时需要先 import json 引入模块 json.dumps()模块函数 功能:将Python数据类型转换成字符串[有参] 使用方法:json.dumps(要转换的数据类型变量) ...

  6. c# Process cmd 执行完回调 Proc_OutputDataReceived mysql mysqldump mysql source备份还原数据

    c# Process 执行完回调 Proc_OutputDataReceived mysql mysqldump mysql source备份还原数据 直接贴代码 前提:mysql5.7 vs2017 ...

  7. Python2.7.13下载安装全过程(Windows版)

    前提:    我下载的Python是windows版本的,演示过程是在win10 64位操作系统上安装的. 1.下载 进入官网https://www.python.org/,找到Dowdloads,根 ...

  8. Arch Linux VMware虚拟机(新手)安装教程

    准备工作: 下载好Arch Linux的镜像文件    百度打开Arch官网点击download(下载)转到下载界面,点击磁力下载或者种子下载(官网默认是英文,英文不好的童鞋可以安装浏览器翻译插件,本 ...

  9. quartz任务调度框架与spring整合

    Quartz是什么? Quartz 是一种功能丰富的,开放源码的作业调度库,可以在几乎任何Java应用程序集成 - 从最小的独立的应用程序到规模最大电子商务系统.Quartz可以用来创建简单或复杂的日 ...

  10. vue双向数据绑定

    本文来源于 https://jingyan.baidu.com/article/91f5db1b0c2a4f1c7f05e3a8.html