3673: 可持久化并查集 by zky

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 1878  Solved: 846
[Submit][Status][Discuss]

Description

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4

Input

Output

Sample Input

5 6
1 1 2
3 1 2
2 0
3 1 2
2 1
3 1 2

Sample Output

1
0
1

HINT

Source

3674: 可持久化并查集加强版

Time Limit: 15 Sec  Memory Limit: 256 MB
Submit: 2367  Solved: 886
[Submit][Status][Discuss]

Description

Description:
自从zkysb出了可持久化并查集后……
hzwer:乱写能AC,暴力踩标程
KuribohG:我不路径压缩就过了!
ndsf:暴力就可以轻松虐!
zky:……

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0
请注意本题采用强制在线,所给的a,b,k均经过加密,加密方法为x = x xor lastans,lastans的初始值为0
0<n,m<=2*10^5

Input

Output

Sample Input

5 6
1 1 2
3 1 2
2 1
3 0 3
2 1
3 1 2

Sample Output

1
0
1

HINT

Source

出题人大SB++

Solution

先说离线的一种思路,以前yveh做Codeforces的时候告诉我一道题,与之类似,存在一个状态退回到第多少步,当时是需要线段树维护一个东西,所以可以形成一个树形结构,然后dfs并回溯离线做。

但是这里并不能那么搞,因为并查集不支持删除所以没法回溯,所以只能考虑令并查集的 代表元素数组可持久化

所以本质上都得用可持久化数据结构维护代表元素数组,就无所谓离线在线了。

具体的做法就是建可持久化线段树,每次修改就在线段树上建一个新的链,叶子节点维护的是这个点的代表元素,所以方法很简单就是先初始化建出一棵新的树,然后每次新建一条链即可。

然后这里就剩下一个问题了,就是并查集$find$,为了保证复杂度,我采用了路径压缩但这里发现路径压缩会使树上操作数增多,建很多新的节点,所以常数比较大,然后看了hxy和zyf的代码,发现她们都和hzwer写的一样,采用的按秩合并,不过常数比我还大,不过显而易见 如果不加优化一定会TLE,所以二选一即可,并无太大的差距。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 500010
int N,M,last;
namespace PrTree
{
int sz,lson[MAXN*],rson[MAXN*],root[MAXN],f[MAXN*];
inline void Insert(int l,int r,int &now,int fa,int pos,int val)
{
now=++sz;
if (l==r) {f[now]=val; return;}
int mid=(l+r)>>;
lson[now]=lson[fa],rson[now]=rson[fa];
if (pos<=mid) Insert(l,mid,lson[now],lson[fa],pos,val);
else Insert(mid+,r,rson[now],rson[fa],pos,val);
}
inline int Query(int l,int r,int pos,int now)
{
if (l==r) return f[now];
int mid=(l+r)>>;
if (pos<=mid) return Query(l,mid,pos,lson[now]);
else return Query(mid+,r,pos,rson[now]);
}
inline void BuildTree(int l,int r,int &now)
{
now=++sz;
if (l==r) {f[now]=l; return;}
int mid=(l+r)>>;
BuildTree(l,mid,lson[now]); BuildTree(mid+,r,rson[now]);
}
}using namespace PrTree;
inline int F(int x,int &rt) {int fa; if ((fa=Query(,N,x,rt))==x) return x; else return Insert(,N,rt,rt,x,fa=F(fa,rt)),fa;}
inline void Merge(int x,int y,int &rt) {int fx=F(x,rt),fy=F(y,rt); if (fx!=fy) Insert(,N,rt,rt,fx,fy);}
int main()
{
N=read(),M=read();
BuildTree(,N,root[]);
for (int i=; i<=M; i++)
{
root[i]=root[i-];
int opt=read(),x,y;
switch (opt)
{
case : x=read(),y=read(); x^=last,y^=last; Merge(x,y,root[i]); break;
case : x=read(); x^=last; root[i]=root[x]; break;
case : x=read(),y=read(); x^=last,y^=last; printf("%d\n",last=(F(x,root[i])==F(y,root[i]))); break;
}
}
return ;
}

总体来说写起来还是蛮好写的,就是自己开始手误,在可持久化线段树的时候 左右都下放的lson,然后瞪着屏幕20分钟才看出来...

【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集的更多相关文章

  1. [WC2005]双面棋盘(线段树+并查集)

    线段树+并查集维护连通性. 好像 \(700ms\) 的时限把我的常数超级大的做法卡掉了, 必须要开 \(O_2\) 才行. 对于线段树的每一个结点都开左边的并查集,右边的并查集,然后合并. \(Co ...

  2. 【bzoj4399】魔法少女LJJ 并查集+权值线段树合并

    题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...

  3. 2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集)

    2022.02.27 CF811E Vladik and Entertaining Flags(线段树+并查集) https://www.luogu.com.cn/problem/CF811E Ste ...

  4. bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)

    CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...

  5. BZOJ.3673/3674.可持久化并查集(可持久化线段树 按秩合并/启发式合并)

    BZOJ 3673 BZOJ 3674(加强版) 如果每次操作最多只修改一个点的fa[],那么我们可以借助可持久化线段树来O(logn)做到.如果不考虑找fa[]的过程,时空复杂度都是O(logn). ...

  6. bzoj 3673&3674: 可持久化并查集 by zky

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  7. [bzoj] 3673 3674 可持久化并查集 || 可持久化数组

    原题 加强版 题意: 可持久化并查集模板-- 题解: 用可持久化线段树维护一个可持久化数组,来记录每一次操作后的状态. 不能用路径压缩,但是要按置合并,使复杂度保证在O(log) #include&l ...

  8. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  9. bzoj 2733: [HNOI2012]永无乡【并查集+权值线段树】

    bzoj上数组开大会T-- 本来想用set瞎搞的,想了想发现不行 总之就是并查集,每个点开一个动态开点的权值线段树,然后合并的时候把值并在根上,询问的时候找出在根的线段树里找出k小值,看看这个值属于哪 ...

随机推荐

  1. 阶段一:用Handler和Message实现计时效果及其中一些疑问

    “阶段一”是指我第一次系统地学习Android开发.这主要是对我的学习过程作个记录. 本来是打算继续做天气预报的优化的,但因为某些原因,我要先把之前做的小应用优化一下.所以今天就插播一下用Handle ...

  2. iOS:GCD组

    组内异步会与组外顺序执行的事件争抢资源 1).创建一个组 dispatch_group_t group = dispatch_group_create(); 2).组内异步ST1,DISPATCH_Q ...

  3. jQuery 上传头像插件Jcrop的实例

    兼容:ie6+,FF,chrome等 示例图: CSS:     说明:图像比例为110:135     下载包里有 jquery.Jcrop.css          .jc-demo-box{po ...

  4. 感受C# 的魅力,将一坨代码写成一行

    摘自MSDN :https://msdn.microsoft.com/zh-cn/library/bb549151(v=vs.100).aspx 1.平时定义一个委托 using System; // ...

  5. currentStyle与getComputedStyle应用

    getComputedStyle获取的是计算机(浏览器)计算后的样式,但是不兼容IE6.7.8(主要用于非IE浏览器) currentStyle方法兼容IE6.7.8,但是不兼容标准浏览器(主要用于I ...

  6. Windows Server 2012 虚拟化实战:网络(一)

    虚拟化对于计算的抽象,大家可能相对熟悉,也许都有在单机使用诸如Virtual PC或者Virtual Box的经验.使用的这些虚拟化软件的第一印象就是我们的CPU可以同时运行多套不同的操作系统,并且其 ...

  7. 阿里云ECS服务器配置(Ubuntu+JAVA+Tomcat+Mysql)

    最近购买了阿里云的ECS服务器,就服务器的安装配置做简要的说明,也方便日后查看. 1.远程操作服务器 远程操作服务器可以使用putty工具,下载地址:http://pan.baidu.com/s/1q ...

  8. 高级查询---嵌套and分页

    高级嵌套语句: 子查询: 语句: select * from 表名 where 列名= ( 子查询语句 ) 注意:子查询语句必须放在小括号呢 可以使用< >=等运算符号,sql serve ...

  9. spring3 DI基础

    Spring IOC容器的依赖有两层含义:Bean依赖容器和容器注入Bean的依赖资源: Bean依赖容器:bean要依赖于容器,这里的依赖是指容器负责创建Bean并管理bean的生命周期.正是由于由 ...

  10. [bzoj2588][count on a tree] (主席树+lca)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...