MapReduce-CombineTextInputFormat 切片机制
MapReduce 框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,如果有大量小文件,就会产生大量的 MapTask,处理小文件效率非常低。
CombineTextInputFormat:用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。
CombineTextInputFormat 切片机制过程包括:虚拟存储过程和切片过程二部分 假设 setMaxInputSplitSize 值为 4M,有如下四个文件
a.txt 1.7M
b.txt 5.1M
c.txt 3.4M
d.txt 6.8M (1)虚拟存储过程
(1.1)将输入目录下所有文件大小,依次和设置的 setMaxInputSplitSize 值比较,如果不大于设置的最大值,逻辑上划分一个块。
(1.2)如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块,当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。
1.7M < 4M 划分一块
5.1M > 4M 但是小于 2*4M 划分二块:块1=2.55M,块2=2.55M
3.4M < 4M 划分一块
6.8M > 4M 但是小于 2*4M 划分二块:块1=3.4M,块2=3.4M
最终存储的文件:
1.7M
2.55M,2.55M
3.4M
3.4M,3.4M (2)切片过程
(2.1)判断虚拟存储的文件大小是否大于 setlMaxIputSplitSize 值,大于等于则单独形成一个切片。
(2.2)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
最终会形成3个切片:
(1.7+2.55)M,(2.55+3.4)M,(34+3.4)M
测试读取数据的方式
控制台日志
可以看到读取方式与 TextInputFormat 一样,k 为偏移量,v 为一行的值,按行读取
以 WordCount 为例进行测试,测试切片数
测试数据
测试代码
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator; import java.io.IOException;
import java.util.StringTokenizer; public class WordCount { static {
try {
// 设置 HADOOP_HOME 环境变量
System.setProperty("hadoop.home.dir", "D:/DevelopTools/hadoop-2.9.2/");
// 日志初始化
BasicConfigurator.configure();
// 加载库文件
System.load("D:/DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load.\n" + e);
System.exit(1);
}
} public static void main(String[] args) throws Exception {
args = new String[]{"D:\\tmp\\input", "D:\\tmp\\456"};
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 设置 InputFormat,默认为 TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
// 设置最大值即可 128M
CombineTextInputFormat.setMaxInputSplitSize(job, 1024 * 1024 * 128); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); @Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
// 查看 k-v
// System.out.println(key + "\t" + value);
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}
由于所有文件加起来大小都没有 128M,所以切片数为 1
MapReduce-CombineTextInputFormat 切片机制的更多相关文章
- Hadoop(14)-MapReduce框架原理-切片机制
1.FileInputFormat切片机制 切片机制 比如一个文件夹下有5个小文件,切片时会切5个片,而不是一个片 案例分析 2.FileInputFormat切片大小的参数配置 源码中计算切片大小的 ...
- MapReduce-TextInputFormat 切片机制
MapReduce 默认使用 TextInputFormat 进行切片,其机制如下 (1)简单地按照文件的内容长度进行切片 (2)切片大小,默认等于Block大小,可单独设置 (3)切片时不考虑数据集 ...
- 【大数据】MapTask并行度和切片机制
一. MapTask并行度决定机制 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度 那么,mapTask并行实例是否越多越好呢?其并行度又是如何决定呢? 1.1 ...
- MapReduce中作业调度机制
MapReduce中作业调度机制主要有3种: 1.先入先出FIFO Hadoop 中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业. 2.公平调度器(相当于时间 ...
- 王家林的“云计算分布式大数据Hadoop实战高手之路---从零开始”的第十一讲Hadoop图文训练课程:MapReduce的原理机制和流程图剖析
这一讲我们主要剖析MapReduce的原理机制和流程. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发 ...
- 经典MapReduce作业和Yarn上MapReduce作业运行机制
一.经典MapReduce的作业运行机制 如下图是经典MapReduce作业的工作原理: 1.1 经典MapReduce作业的实体 经典MapReduce作业运行过程包含的实体: 客户端,提交MapR ...
- MapReduce 切片机制源码分析
总体来说大概有以下2个大的步骤 1.连接集群(yarnrunner或者是localjobrunner) 2.submitter.submitJobInternal()在该方法中会创建提交路径,计算切片 ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
- hadoop MapReduce Yarn运行机制
原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) ...
随机推荐
- Python网络爬虫-信息标记
信息标记的三种形式: XML(扩展标记语言) JSON(js中面向对象的信息表达形式,由类型的(string)键值对组成) "name":"北京理工大学" YA ...
- linux下mysql区分大小写的内容
1.数据库名严格区分大小写2.表名严格区分大小写的3.表的别名严格区分大小写4.变量名严格区分大小写5.列名在所有的情况下均忽略大小写6.列的别名在所有的情况下均忽略大小写
- 深入理解group by 语句的执行顺序 from→where→group by→select(含聚合函数)
由于之前没有对group by 语句的执行顺序(执行原理)做深入的了解,所以导致在实际应用过程中出现了一些问题.举个简单的粟子,比如一个表testA中的所有数据如下图: 我现在想从testA中查询us ...
- DVWA 黑客攻防演练(十一) 存储型 XSS 攻击 Stored Cross Site Scripting
上一篇文章会介绍了反射型 XSS 攻击.本文主要是通过 dvwa 介绍存储型 XSS 攻击.存储型 XSS 攻击影响范围极大.比如是微博.贴吧之类的,若有注入漏洞,再假如攻击者能用上一篇文章类似的代码 ...
- 重庆3Shape Dental System技术支持
Dental System 2014中的一些新的功能:为提高生产力增添了自动冠功能软件会自动根据位置设计冠的形状,以适应周围的牙齿和拮抗剂.新的强大的用户体验优化了工作流程和一个新的重新设计的用户界面 ...
- 【转】Python之道
作者:Vamei 出处:http://www.cnblogs.com/vamei Python有一个彩蛋,用下面语句调出: import this 该彩蛋的文档记录于PEP 20. 语句执行之后,终端 ...
- spark2.4 分布式安装
一.Spark2.0的新特性Spark让我们引以为豪的一点就是所创建的API简单.直观.便于使用,Spark 2.0延续了这一传统,并在两个方面凸显了优势: 1.标准的SQL支持: 2.数据框(Dat ...
- clamwin + 拖拽查毒+右键查毒
下载 clamwin 到 windows 并安装 http://www.clamwin.com/ 为了方便使用clamwin,写一个bat,实现拖拽到bat 自动查毒 @echo off mode c ...
- day 25 面向对象之接口、抽象类、多态、异常处理、反射、断言
复习 '''继承1.父类:在类后()中写父类们class A:passclass B:passclass C(A, B):pass2.属性查找顺序:自己 -> ()左侧的父类 -> 依 ...
- keepalived的主从备份服务器
一.环境说明 1.操作系统内核版本:linux 6.0 2.Keepalived软件版本:keepalived-1.1.20.tar.gz 二.环境配置 1.主Keepalived服务器IP地址 19 ...