【原创】大叔问题定位分享(27)spark中rdd.cache
spark 2.1.1
spark应用中有一些task非常慢,持续10个小时,有一个task日志如下:
2019-01-24 21:38:56,024 [dispatcher-event-loop-22] INFO org.apache.spark.executor.CoarseGrainedExecutorBackend - Got assigned task 4031
2019-01-24 21:38:56,024 [Executor task launch worker for task 4031] INFO org.apache.spark.executor.Executor - Running task 11.0 in stage 98.0 (TID 4031)
2019-01-24 21:38:56,050 [Executor task launch worker for task 4031] INFO org.apache.spark.MapOutputTrackerWorker - Don't have map outputs for shuffle 13, fetching them
2019-01-24 21:38:56,050 [Executor task launch worker for task 4031] INFO org.apache.spark.MapOutputTrackerWorker - Doing the fetch; tracker endpoint = NettyRpcEndpointRef(spark://MapOutputTracker@server1:30384)
2019-01-24 21:38:56,052 [Executor task launch worker for task 4031] INFO org.apache.spark.MapOutputTrackerWorker - Got the output locations
2019-01-24 21:38:56,052 [Executor task launch worker for task 4031] INFO org.apache.spark.storage.ShuffleBlockFetcherIterator - Getting 200 non-empty blocks out of 200 blocks
2019-01-24 21:38:56,054 [Executor task launch worker for task 4031] INFO org.apache.spark.storage.ShuffleBlockFetcherIterator - Started 19 remote fetches in 2 ms2019-01-25 07:07:54,200 [Executor task launch worker for task 4031] INFO org.apache.spark.storage.memory.MemoryStore - Block rdd_108_11 stored as values in memory (estimated size 222.6 MB, free 1893.2 MB)
2019-01-25 07:07:54,546 [Executor task launch worker for task 4031] INFO org.apache.spark.storage.memory.MemoryStore - Block rdd_117_11 stored as values in memory (estimated size 87.5 MB, free 1805.8 MB)
2019-01-25 07:07:54,745 [Executor task launch worker for task 4031] INFO org.apache.spark.storage.memory.MemoryStore - Block rdd_118_11 stored as values in memory (estimated size 87.5 MB, free 1718.3 MB)
2019-01-25 07:07:54,987 [Executor task launch worker for task 4031] INFO org.apache.spark.sql.hive.SparkHiveDynamicPartitionWriterContainer - Sorting complete. Writing out partition files one at a time.
2019-01-25 07:07:57,425 [Executor task launch worker for task 4031] INFO org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter - Saved output of task 'attempt_20190124213852_0098_m_000011_0' to hdfs://namenode/user/hive/warehouse/
db_name.db/table_name/.hive-staging_hive_2019-01-24_21-38-52_251_7997709482427937209-1/-ext-10000/_temporary/0/task_20190124213852_0098_m_000011
2019-01-25 07:07:57,425 [Executor task launch worker for task 4031] INFO org.apache.spark.mapred.SparkHadoopMapRedUtil - attempt_20190124213852_0098_m_000011_0: Committed
2019-01-25 07:07:57,426 [Executor task launch worker for task 4031] INFO org.apache.spark.executor.Executor - Finished task 11.0 in stage 98.0 (TID 4031). 4259 bytes result sent to driver
从2019-01-24 21:38:56到2019-01-25 07:07:54之间没有任何日志,应用还没结束,当前还有一些很慢的task在运行,查看这些task所在executor的thread dump发现卡在一个线程上:
java.lang.Thread.sleep(Native Method)
app.package.AppClass.do(AppClass.scala:228)
org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)
org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)
scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:216)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
org.apache.spark.scheduler.Task.run(Task.scala:99)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)
其中app.package.AppClass.do是一个很耗时的操作,会在rdd的每个element上操作一次,问题是已经在这个操作之后对rdd做了cache,为什么后续依赖这个rdd的时候又会重新计算一遍?
问题简化如下:
rdd.map(item => doLongTime(item))
rdd.cache
//take long time
println(rdd.count)
//take long time too, why?
println(rdd.count)
查看代码
RDD的compute由子类覆盖,通常会调用RDD.iterator
org.apache.spark.rdd.RDD
/**
* Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
* This should ''not'' be called by users directly, but is available for implementors of custom
* subclasses of RDD.
*/
final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
if (storageLevel != StorageLevel.NONE) {
getOrCompute(split, context)
} else {
computeOrReadCheckpoint(split, context)
}
} /**
* Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached.
*/
private[spark] def getOrCompute(partition: Partition, context: TaskContext): Iterator[T] = {
val blockId = RDDBlockId(id, partition.index)
var readCachedBlock = true
// This method is called on executors, so we need call SparkEnv.get instead of sc.env.
SparkEnv.get.blockManager.getOrElseUpdate(blockId, storageLevel, elementClassTag, () => {
readCachedBlock = false
computeOrReadCheckpoint(partition, context)
}) match {
case Left(blockResult) =>
if (readCachedBlock) {
val existingMetrics = context.taskMetrics().inputMetrics
existingMetrics.incBytesRead(blockResult.bytes)
new InterruptibleIterator[T](context, blockResult.data.asInstanceOf[Iterator[T]]) {
override def next(): T = {
existingMetrics.incRecordsRead(1)
delegate.next()
}
}
} else {
new InterruptibleIterator(context, blockResult.data.asInstanceOf[Iterator[T]])
}
case Right(iter) =>
new InterruptibleIterator(context, iter.asInstanceOf[Iterator[T]])
}
}
RDD.iterator中会根据storageLevel有一个判断,一个是尝试从checkpoint中恢复或者计算,一个是从cache中get或计算,加了cache的rdd会执行RDD.getOrCompute,RDD.getOrCompute会调用BlockManager.getOrElseUpdate
org.apache.spark.storage.BlockManager
/**
* Retrieve the given block if it exists, otherwise call the provided `makeIterator` method
* to compute the block, persist it, and return its values.
*
* @return either a BlockResult if the block was successfully cached, or an iterator if the block
* could not be cached.
*/
def getOrElseUpdate[T](
blockId: BlockId,
level: StorageLevel,
classTag: ClassTag[T],
makeIterator: () => Iterator[T]): Either[BlockResult, Iterator[T]] = {
// Attempt to read the block from local or remote storage. If it's present, then we don't need
// to go through the local-get-or-put path.
get[T](blockId)(classTag) match {
case Some(block) =>
return Left(block)
case _ =>
// Need to compute the block.
}
// Initially we hold no locks on this block.
doPutIterator(blockId, makeIterator, level, classTag, keepReadLock = true) match {
case None =>
// doPut() didn't hand work back to us, so the block already existed or was successfully
// stored. Therefore, we now hold a read lock on the block.
val blockResult = getLocalValues(blockId).getOrElse {
// Since we held a read lock between the doPut() and get() calls, the block should not
// have been evicted, so get() not returning the block indicates some internal error.
releaseLock(blockId)
throw new SparkException(s"get() failed for block $blockId even though we held a lock")
}
// We already hold a read lock on the block from the doPut() call and getLocalValues()
// acquires the lock again, so we need to call releaseLock() here so that the net number
// of lock acquisitions is 1 (since the caller will only call release() once).
releaseLock(blockId)
Left(blockResult)
case Some(iter) =>
// The put failed, likely because the data was too large to fit in memory and could not be
// dropped to disk. Therefore, we need to pass the input iterator back to the caller so
// that they can decide what to do with the values (e.g. process them without caching).
Right(iter)
}
}
getOrElseUpdate.getOrElseUpdate首先尝试从cache中获取block,如果没有则调用doPutIterator计算并放到cache中;
org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
所以jstack中的堆栈doPutIterator表明cache中没有,需要重新计算;
org.apache.spark.rdd.RDD
/**
* Persist this RDD with the default storage level (`MEMORY_ONLY`).
*/
def cache(): this.type = persist() /**
* Persist this RDD with the default storage level (`MEMORY_ONLY`).
*/
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
cache使用的StorageLevel是MEMORY_ONLY,如果内存不够有些分区可能会被evict掉,具体策略在org.apache.spark.storage.memory.MemoryStore中
下面看StorageLevel:
org.apache.spark.storage.StorageLevel
/**
* :: DeveloperApi ::
* Flags for controlling the storage of an RDD. Each StorageLevel records whether to use memory,
* or ExternalBlockStore, whether to drop the RDD to disk if it falls out of memory or
* ExternalBlockStore, whether to keep the data in memory in a serialized format, and whether
* to replicate the RDD partitions on multiple nodes.
*
* The [[org.apache.spark.storage.StorageLevel$]] singleton object contains some static constants
* for commonly useful storage levels. To create your own storage level object, use the
* factory method of the singleton object (`StorageLevel(...)`).
*/
@DeveloperApi
class StorageLevel private(
private var _useDisk: Boolean,
private var _useMemory: Boolean,
private var _useOffHeap: Boolean,
private var _deserialized: Boolean,
private var _replication: Int = 1)
extends Externalizable {
... object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
所以一些昂贵的操作之后不要以为Rdd.cache就可以避免重复计算,因为MEMORY_ONLY只是尽量帮你把数据缓存在内存,并不是一种保证,应该使用RDD.persist(StorageLevel.MEMORY_AND_DISK)
【原创】大叔问题定位分享(27)spark中rdd.cache的更多相关文章
- 【原创】大叔问题定位分享(11)Spark中对大表子查询加limit为什么会报Broadcast超时错误
		
当两个表需要join时,如果一个是大表,一个是小表,正常的map-reduce流程需要shuffle,这会导致大表数据在节点间网络传输,常见的优化方式是将小表读到内存中并广播到大表处理,避免shuff ...
 - 关于Spark中RDD的设计的一些分析
		
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...
 - spark中RDD的转化操作和行动操作
		
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...
 - Spark 中 RDD的运行机制
		
1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...
 - spark中的cache和persist的区别
		
在使用中一直知其然不知其所以然的地使用RDD.cache(),系统的学习之后发现还有一个与cache功能类似看起来冗余的persist 点进去一探究竟之后发现cache()是persist()的特例, ...
 - 【原创】大叔问题定位分享(7)Spark任务中Job进度卡住不动
		
Spark2.1.1 最近运行spark任务时会发现任务经常运行很久,具体job如下: Job Id ▾ Description Submitted Duration Stages: Succeed ...
 - 【原创】大叔问题定位分享(18)beeline连接spark thrift有时会卡住
		
spark 2.1.1 beeline连接spark thrift之后,执行use database有时会卡住,而use database 在server端对应的是 setCurrentDatabas ...
 - 【原创】大叔问题定位分享(16)spark写数据到hive外部表报错ClassCastException: org.apache.hadoop.hive.hbase.HiveHBaseTableOutputFormat cannot be cast to org.apache.hadoop.hive.ql.io.HiveOutputFormat
		
spark 2.1.1 spark在写数据到hive外部表(底层数据在hbase中)时会报错 Caused by: java.lang.ClassCastException: org.apache.h ...
 - 【原创】大叔问题定位分享(15)spark写parquet数据报错ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead
		
spark 2.1.1 spark里执行sql报错 insert overwrite table test_parquet_table select * from dummy 报错如下: org.ap ...
 
随机推荐
- 如何在已有的 Web 应用中使用 ReactJS
			
原文:How to Sprinkle ReactJS into an Existing Web Application 译者:nzbin 当我们学习一项新技术,可能是一个 JavaScript 框架, ...
 - Winform让扫描枪听话,防止在有焦点的地方就扫码输入的尴尬
			
关注点: 1.扫描枪在扫描到条码后会在有焦点的地方显示扫描到的条码并且可设置扫码后添加回车换行让我很尴尬 2.怎样拦截扫码输入,扫描到条码就自动会嘀一声.不要这么智能行不行.瞎BB 需求详解 公司生产 ...
 - 程序员如何开始做一个自己的 Side Project?
			
此系列文章我们开始聊一些软件开发人员如何开始动手写一些自己项目(Side Project)的思路与方法,以及过程中可能需要准备的知识,并分享一些相关的资源给大家. 1. 什么是 Side Projec ...
 - vue的一些基本知识
			
配置webpack及vue脚手架工具: vue-cli 2 npm install webpack webpack-cli -g npm install vue-cli -g 搭建脚手架 vue ...
 - openstack第四章:neutron— 网络服务
			
第四篇neutron— 网络服务 一.neutron 介绍: Neutron 概述 传统的网络管理方式很大程度上依赖于管理员手工配置和维护各种网络硬件设备:而云环境下的网络已经变得非常复杂,特别是 ...
 - Shell脚本中的break continue exit return
			
转自:http://www.cnblogs.com/guosj/p/4571239.html break结束并退出循环 continue在循环中不执行continue下面的代码,转而进入下一轮循环 e ...
 - Java多线程9:中断机制
			
一.概述 之前讲解Thread类中方法的时候,interrupt().interrupted().isInterrupted()三个方法没有讲得很清楚,只是提了一下.现在把这三个方法同一放到这里来讲, ...
 - Axis2创建WebService服务端接口+SoupUI以及Client端demo测试调用
			
第一步:引入axis2相关jar包,如果是pom项目,直接在pom文件中引入依赖就好 <dependency> <groupId>org.apache.axis2</gr ...
 - HBase数据库配置中各配置项的释义及默认值
			
2018-11-26 16:09 2018-12-20 15:44 摘自HBASE官方网站 http://hbase.apache.org/book.html#_introduction 第7.2 ...
 - [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增
			
题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...