一道很好的单调队列优化多重背包入门题

令\(v[i]\)表示重量,\(w[i]\)表示价格 ,\(c[i]\)表示最多可放的数量,不难推出朴素的转移方程如下:

$f[i][j]=max\{f[i-1][j-k*v[i]]+k*w[i]\},j-k*v[i]\geqslant 0$
但这样时间复杂度太高了,令$r=j\%v[i],s=\left \lfloor \frac{j}{v[i]} \right \rfloor$考虑给转移方程变形为:
$f[i][j]=max\{f[i-1][r+k*v[i]]-k*w[i]\}+s*w[i],s-c[i]\leqslant k\leqslant s$
这个转移方程同样是正确的,并且我们发现取$max$的那一部分,在$r$确定的情况下,只跟$k$的值有关,于是我们就可以用单调队列优化啦。枚举$i$,$r$之后,对于每一个$r$我们开一个单调队列,扫一遍就好了
时间复杂度$O(nV)$
坑点:重量为$0$的物品要直接累加到答案中!
代码如下(懒得用滚动数组):
``` cpp
#include

using namespace std;

int n, m, zero, v[(int)1e5], w[(int)1e5], c[(int)1e5], f[105][(int)2e5];

struct S { //习惯开结构体QwQ

int id, w;

}q[(int)2e5];

int main() {

cin >> n >> m;

for(int i = 1; i <= n; ++i) cin >> w[i] >> v[i] >> c[i];

for(int i = 1; i <= n; ++i) {

if(!v[i]) { //处理重量为0的物品

zero += w[i]c[i];

continue;

}

for(int r = 0, h = 0, t = 0; r < v[i]; ++r, h = t = 0) //h,t记得清零

for(int j = r, s = 0; j <= m; j += v[i], ++s) {

while(h < t && q[t-1].w < f[i-1][j]-s
w[i]) --t; //--维护

q[t++] = S{s, f[i-1][j]-sw[i]}; //--队列

while(h < t && q[h].id < s-c[i]) ++h; //--单调性

f[i][j] = q[h].w+s
w[i];

}

}

cout << zero+f[n][m];

return 0;

}

洛谷P1776 宝物筛选的更多相关文章

  1. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)

    P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...

  2. 洛谷p1776宝物筛选

    宝物筛选 多重背包问题 物品数目已知 可以枚举每个物品 当做01背包来做 不过会超时 此时需要二进制拆分来优化 分解成新的物品 再跑一遍01背包即可 //二进制拆分+01背包 //设f[j]表示前i件 ...

  3. 洛谷P1776 宝物筛选 题解 多重背包

    题目链接:https://www.luogu.com.cn/problem/P1776 题目大意: 这道题目是一道 多重背包 的模板题. 首先告诉你 n 件物品和背包的容量 V ,然后分别告诉你 n ...

  4. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)

    为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...

  5. 洛谷 P1776 宝物筛选(多重背包)

    题目传送门 解题思路: 可以转化成0-1背包来做,但暴力转化的话,时间不允许.所以就用了一个二进制划分的方法,将m个物品分成2,4,8,16,32......(2的次方)表示,可以证明这些数通过一定组 ...

  6. 背包问题的优化(洛谷1776 宝物筛选_NOI导刊)

    背包型dp,但是没有看清数据范围差点认为是水题了,(然后诡异的拿了20分)标解是:2进制优化,比较简单把每一类物品看做若干个相互独立的物品,放在一个另外的数组里,然后全局跑一边01就可以.主要思想是: ...

  7. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  8. [luogu P1776] 宝物筛选 解题报告(单调队列优化DP)

    题目链接: https://www.luogu.org/problemnew/show/P1776 题目: 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF ...

  9. luogu||P1776||宝物筛选||多重背包||dp||二进制优化

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

随机推荐

  1. Linux分页机制之分页机制的实现详解--Linux内存管理(八)

    1 linux的分页机制 1.1 四级分页机制 前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制, ...

  2. Burpsuite 之intruder

    首先工具:Burpsuite1.7,DVWA,火狐浏览器代理插件,火狐浏览器,密码字典(以下用Bp代指burpsuite) 启动Bp,启动DVWA,并打开本地代理功能 ​ 开启bp的拦截功能,并在dv ...

  3. [转] Linux Asynchronous I/O Explained

    Linux Asynchronous I/O Explained (Last updated: 13 Apr 2012) *************************************** ...

  4. VS2017离线安装包[百度云盘](收藏了)

    *************************************************************************************************** ...

  5. c#操作SQL Server入门总结

    我是一名c#新手.本文只是我是常学习的随笔. 一.下载SQL server软件 听说下载开发板是最好的(开发板如果只是用来学习.研究不算是侵权).在安装的时候,我也遇到了很多问题,在公司的电脑安装第一 ...

  6. jvisualvm 连接 jstatd 远程监控 jvm 或 Visual GC提示"不受此JVM支持“

    Visual GC提示"不受此JVM支持",可以使用此方法解决. 一.添加配置文件 jstatd.all.policy [root@localhost /]# cd /usr/lo ...

  7. 周末班:Python基础之网络编程

    一.楔子 你现在已经学会了写python代码,假如你写了两个python文件a.py和b.py,分别去运行,你就会发现,这两个python的文件分别运行的很好.但是如果这两个程序之间想要传递一个数据, ...

  8. Windows 版 SourceTree 免登录跳过初始设置的方法

    首先去官网下载最新的sourcetree安装包,点击打开下载地址. 下载完成后安装,等到他自启动开始提示你登录的时候,打开“我的电脑(此电脑)”,在最上边的输入栏输入%LocalAppData%\At ...

  9. ElasticSearch(七):Java操作elasticsearch基于smartcn中文分词查询

    package com.gxy.ESChap01; import java.net.InetAddress; import org.elasticsearch.action.search.Search ...

  10. 学号 20175329 2018-2019-3《Java程序设计》第九周学习总结

    学号 20175329 2018-2019-3<Java程序设计>第八周学习总结 教材学习内容总结 第十五章 泛型 可以使用"class 名称"声明一个类,为了和普通的 ...