T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".

You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad:

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.

Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle:

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.

Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad.

 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
 
题意:n(1<=n<=1000)个数,将其分成m + 1 (0 <= m < n)组,要求每组数必须是连续的而且要求得到的价值最小。
一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0
思路:可以把题目理解为整数划分类型的题目,关键是打表发现可以用四边形不等式优化
dp[i][j] 前i个数 分成j组  dp[i][j]=min(dp[k][j-1]+(d[i]-(sum[i]-sum[k])*sum[k]-d[k]); d[]表示前缀的任意两点的权值和   sum[]为前缀和
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int sum[];
int d[];
int dp[][]; //前i个点分成j组
int s[][];
int main(){
ios::sync_with_stdio(false);
int n,m;
while(cin>>n>>m){
if(!n&&!m) break;
memset(dp,inf,sizeof(dp));
for(int i=;i<=n;i++)
cin>>a[i],sum[i]=sum[i-]+a[i];
for(int i=;i<=n;i++){
d[i]=a[i]*sum[i-]+d[i-];
}
for(int i=;i<=n;i++){
dp[i][]=d[i];
s[i][]=;
}
for(int j=;j<=m+;j++){
s[n+][j]=n;
for(int i=n;i>=j;i--){
for(int k=s[i][j-];k<=s[i+][j];k++){
if(dp[i][j]>dp[k][j-]+d[i]-(sum[i]-sum[k])*sum[k]-d[k]){
dp[i][j]=dp[k][j-]+d[i]-(sum[i]-sum[k])*sum[k]-d[k];
s[i][j]=k;
}
}
}
}
cout<<dp[n][m+]<<endl;
}
return ;
}

hdu 2829 Lawrence(四边形不等式优化dp)的更多相关文章

  1. hdoj 2829 Lawrence 四边形不等式优化dp

    dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. # ...

  2. [HDU2829] Lawrence [四边形不等式优化dp]

    题面: 传送门 思路: 依然是一道很明显的区间dp 我们设$dp\left[i\right]\left[j\right]$表示前$j$个节点分成了$i$块的最小花费,$w\left[i\right]\ ...

  3. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  4. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  5. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  6. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  7. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  8. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  9. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

随机推荐

  1. postgresql 日志报错could not write to log file: No space left on device,could not write lock file "postmaster.pid": No space left on device

    今天遇到了一个特别奇怪的问题,我在用docker容器的时候,发现我的postgresql怎么也启动不起来 尝试了N多种办法,最后看了看postgresql的日志发现 postgresql 日志中报错 ...

  2. Workspace in use or cannot be created, choose a different one.

      eclipse 使用一段时间后,有时会因为一些故障自己就莫名奇妙的关闭了,再打开时有时没有问题,有时有会提示错误 Workspace Unavailable: Workspace in use o ...

  3. 通过Erlang构建TCP服务应用案例(最原始方式)

    文章来源:公众号-智能化IT系统. 案例介绍 本文介绍的案例是TCP网络服务器的构建,用最原始的方式(非OTP).其功能很简单,通过网络TCP接口接收数据,按照指定的格式解析,并把数据存储至Mongo ...

  4. 【案例分享】crontab执行脚本异常问题

    很多时候我们会遇见这种情况,我们千辛万苦写了一个脚本,经过测试,一切正常,然后放到了crontab里面执行,结果,不管怎么配置,就是执行不正常. 结果发现环境问题,居然是这个异常的元凶. 我们先在我们 ...

  5. 重装助手教你如何禁用Windows 10快速启动

    快速启动是首先在Windows 8中实现并延续到Windows 10的功能,可在启动PC时提供更快的启动时间.它是一个方便的功能,也是大多数人在不知情的情况下使用的功能,但还有一些功能会在他们掌握新P ...

  6. Java多线程基础(二)

    1.多线程数据安全 线程同步:多个线程需要访问同一资源时,需要以某种顺序来确定该资源某一时刻只能被一个线程使用.从而,解决并发操作可能带来的异常. 2.同步代码块实现同步(部分代码的访问,我们希望它同 ...

  7. phoenix API服务发布

    概述 Elixir 的 Phoenix 框架对于开发 Web 应用非常方便,不仅有 RoR 的便利,还有 Erlang 的性能和高并发优势. 但是应用的发布涉及到 Erlang 和 Elixir 环境 ...

  8. 文本分类实战(十)—— BERT 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  9. spring启动component-scan类扫描加载过程(转)

    文章转自 http://www.it165.net/pro/html/201406/15205.html 有朋友最近问到了 spring 加载类的过程,尤其是基于 annotation 注解的加载过程 ...

  10. Autoware(2)—加载地图数据

    选择Point cloud.Ref选择.autoware/.data/map/pointcloud_map/里面的全选 点Point cloud加载 vector Map和TF同理