T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".

You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad:

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.

Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle:

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.

Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad.

 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
 
题意:n(1<=n<=1000)个数,将其分成m + 1 (0 <= m < n)组,要求每组数必须是连续的而且要求得到的价值最小。
一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0
思路:可以把题目理解为整数划分类型的题目,关键是打表发现可以用四边形不等式优化
dp[i][j] 前i个数 分成j组  dp[i][j]=min(dp[k][j-1]+(d[i]-(sum[i]-sum[k])*sum[k]-d[k]); d[]表示前缀的任意两点的权值和   sum[]为前缀和
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int sum[];
int d[];
int dp[][]; //前i个点分成j组
int s[][];
int main(){
ios::sync_with_stdio(false);
int n,m;
while(cin>>n>>m){
if(!n&&!m) break;
memset(dp,inf,sizeof(dp));
for(int i=;i<=n;i++)
cin>>a[i],sum[i]=sum[i-]+a[i];
for(int i=;i<=n;i++){
d[i]=a[i]*sum[i-]+d[i-];
}
for(int i=;i<=n;i++){
dp[i][]=d[i];
s[i][]=;
}
for(int j=;j<=m+;j++){
s[n+][j]=n;
for(int i=n;i>=j;i--){
for(int k=s[i][j-];k<=s[i+][j];k++){
if(dp[i][j]>dp[k][j-]+d[i]-(sum[i]-sum[k])*sum[k]-d[k]){
dp[i][j]=dp[k][j-]+d[i]-(sum[i]-sum[k])*sum[k]-d[k];
s[i][j]=k;
}
}
}
}
cout<<dp[n][m+]<<endl;
}
return ;
}

hdu 2829 Lawrence(四边形不等式优化dp)的更多相关文章

  1. hdoj 2829 Lawrence 四边形不等式优化dp

    dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. # ...

  2. [HDU2829] Lawrence [四边形不等式优化dp]

    题面: 传送门 思路: 依然是一道很明显的区间dp 我们设$dp\left[i\right]\left[j\right]$表示前$j$个节点分成了$i$块的最小花费,$w\left[i\right]\ ...

  3. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  4. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  5. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  6. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  7. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  8. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  9. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

随机推荐

  1. SCSS 在项目中的运用

    最后一段时间一直在做一些网站或是CMS的项目,想用bootstrap,但是,设计那哥们说了,用什么都行,就不能用bootstrap,我去了个..... 无语中,逼着自己写.说实话,就是用bootstr ...

  2. 启动期间的内存管理之pagging_init初始化分页机制--Linux内存管理(十四)

    1 今日内容(分页机制初始化) 在初始化内存的结点和内存区域之前, 内核先通过pagging_init初始化了内核的分页机制. 在分页机制完成后, 才会开始初始化系统的内存数据结构(包括内存节点数据和 ...

  3. c/c++ 多线程 std::lock

    多线程 std::lock 当要同时操作2个对象时,就需要同时锁定这2个对象,而不是先锁定一个,然后再锁定另一个.同时锁定多个对象的方法:std::lock(对象1.锁,对象2.锁...) 额外说明: ...

  4. HP ML150 G6 服务器硬件介绍

    前面板和背面板组件介绍: 1 介质托架                           12 系统运行状况 LED 指示灯 2 USB 2.0 端口 (2)               13 AC ...

  5. Filebeat插件启动失败,不能直接查找报错原因

    老是在filebeat启动的这一步骤上出错,但是由于filebeat是由systemd启动的,因此原因也经常查不清楚,因此并不能直观的查出错误在哪里,所以今天教给大家两个寻找错误的根源的方法 先看我这 ...

  6. Jenkins+VS项目持续集成

    软件安装 安装包下载连接:https://jenkins.io/download/ 安装步奏:略 账户名:admin 密码:C:\Program Files (x86)\Jenkins\secrets ...

  7. 简单用数组模拟顺序栈(c++)

    **栈是一种操作受限制的线性表,太多官方的话我也不说了,我们都知道栈元素是先进后出的,它有两种存储结构,分别是顺序存储结构和链式存储结构. **今天我先记一下顺序存储结构,后面我会加上链式存储结构的. ...

  8. 解决IntelliJ IDEA 创建Maven项目速度慢问题

    IntelliJ IDEA 创建maven项目速度很慢,甚至卡住不动了. 原因 IDEA根据maven archetype的本质,其实是执行mvn archetype:generate命令,该命令执行 ...

  9. java多线程(死锁,lock接口,等待唤醒机制)

    一.Lock接口 常用方法 Lock提供了一个更加面对对象的锁,在该锁中提供了更多的操作锁的功能. 使用Lock接口,以及其中的lock()方法和unlock()方法替代同步,对电影院卖票案例中Tic ...

  10. java 项目打jar包,用cmd运行,并且编写运行脚本

    项目是ideal编辑器的springboot项目的demo.打包就是在侧边栏,点击packge ,就会在target下生成jar包. 生成之后把 jar包放在一个文件夹中.新建一个txt文件,在txt ...