题目类型:期望\(DP\)

传送门:>Here<

题意:现有\(N\)个时间段,每个时间段上一节课。如果不申请换教室,那么时间段\(i\)必须去教室\(c[i]\)上课,如果申请换课成功,那么就可以去教室\(d[i]\)上课。第\(i\)节课申请换教室成功的概率是\(k[i]\)。每个教室是无向图的一个节点,从一个教室到另一个教室需要耗费的体力是它们之间的最短路。现在,你最多可以申请换\(M\)节课,问耗费体力值最少的期望

解题思路

题意比较复杂。时间段不如理解为时间点。可以概括为:第\(i\)个时间点要么在\(c[i]\)要么在\(d[i]\),并且到\(d[i]\)去的期望是\(k[i]\)。也就是说申请不成功的概率是\(1-k[i]\)

由于教室最多只有\(300\)间,因此最短路直接用\(Floyd\)处理即可。

然后考虑进行期望\(DP\)。容易想到设\(dp[i][j]\)表示前\(i\)个时间点里,申请\(j\)次的耗费体力值最少的期望。然而我们发现这样设非常难转移,因为我们不知道上一节课有没有换教室。

因此我们增加一维:\(dp[i][j][k]\)表示前\(i\)个时间点里,申请\(j\)次,并且\(k=0\)第\(i\)个时间点在\(c[i]\),\(k=1\)则在\(d[i]\)。这样就可以转移了

由于已经转化为\(DP\)问题,因此我们只需要考虑状态。分开考虑:

\[dp[i][j][0] = \begin{cases} dp[i-1][j][0] + dis[c[i-1]][c[i]]\\ dp[i-1][j][1] + (1-k[i-1])*dis[c[i-1]][c[i]] + k[i-1]*dis[d[i-1]][c[i]] \end{cases}
\]

对于\(dp[i][j][0]\)的转移,我们确定了在第\(i\)个时间点一定在教室\(c[i]\),而起点却不确定。分开考虑乘上概率即可

\[dp[i][j][1] = \begin{cases} dp[i-1][j-1][0] + (1-k[i])*dis[c[i-1]][c[i]] + k[i]*dis[c[i-1]][d[i]]\\ dp[i-1][j-1][1] +... \end{cases}
\]

第二个方程实在太长了(放不下……),可以见代码。总体思想还是和前面差不多,不一样的是\(dp[i][j][1]\)不能代表第\(i\)个时间点在教室\(d[i]\),而是都有可能,因此从\(dp[i-1][j-1][1]\)转移过来时要分四类讨论

Code

注意\(j=0\)也是要讨论的。另外,刚开始\(dp\)数组应该无限大,这样才能在转移时自动排除不可能的情况

/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
using namespace std;
typedef long long ll;
const int MAXN = 2010;
const int MAXM = 20010;
const int INF = 1061109567;
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
int N,M,V,E,x,y,z;
int c[MAXN],d[MAXN],dis[305][305];
double k[MAXN],dp[MAXN][MAXN][2],ans;
int main(){
// freopen(".in","r",stdin);
memset(dis, 0x3f, sizeof(dis));
N = r, M = r, V = r, E = r;
for(int i = 1; i <= V; ++i) dis[i][i] = 0;
for(int i = 1; i <= N; ++i) c[i] = r;
for(int i = 1; i <= N; ++i) d[i] = r;
for(int i = 1; i <= N; ++i) scanf("%lf", k+i);
for(int i = 1; i <= E; ++i){
x = r, y = r, z = r;
dis[x][y] = min(dis[x][y], z);
dis[y][x] = min(dis[y][x], z);
}
for(int K = 1; K <= V; ++K){
for(int i = 1; i <= V; ++i){
for(int j = 1; j <= V; ++j){
dis[i][j] = min(dis[i][j], dis[i][K] + dis[K][j]);
}
}
}
for(int i = 1; i <= N; ++i){
for(int j = 0; j <= M; ++j){
dp[i][j][0] = dp[i][j][1] = 99999999.999;
}
}
dp[1][0][0] = dp[1][1][1] = 0;
for(int i = 2; i <= N; ++i){
dp[i][0][0] = dp[i-1][0][0] + dis[c[i-1]][c[i]];
for(int j = 1; j <= min(i,M); ++j){
dp[i][j][0] = min(dp[i-1][j][0] + dis[c[i-1]][c[i]], dp[i-1][j][1] + (1-k[i-1])*dis[c[i-1]][c[i]] + k[i-1]*dis[d[i-1]][c[i]]);
dp[i][j][1] = min(dp[i-1][j-1][0] + (1-k[i])*dis[c[i-1]][c[i]] + k[i]*dis[c[i-1]][d[i]], dp[i-1][j-1][1] + (1-k[i-1])*(1-k[i])*dis[c[i-1]][c[i]] + (1-k[i-1])*k[i]*dis[c[i-1]][d[i]] + k[i-1]*(1-k[i])*dis[d[i-1]][c[i]] + k[i-1]*k[i]*dis[d[i-1]][d[i]]);
}
}
ans = 9999999.999;
for(int j = 0; j <= M; ++j){
ans = min(ans, min(dp[N][j][0], dp[N][j][1]));
}
printf("%.2f", ans);
return 0;
}

[NOIp2016] 换教室的更多相关文章

  1. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  2. BZOJ 4720 [Noip2016]换教室

    4720: [Noip2016]换教室 Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i( ...

  3. 【BZOJ】4720: [Noip2016]换教室

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1690  Solved: 979[Submit][Status ...

  4. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

  5. [NOIP2016]换教室 题解(奇怪的三种状态)

    2558. [NOIP2016]换教室 [题目描述] 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1< ...

  6. 【bzoj4720】[NOIP2016]换教室

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  7. [NOIP2016]换教室(概率期望$DP$)

    其实吧我老早就把这题切了--因为说实话,这道题确实不难啊--李云龙:比他娘的状压DP简单多了 今天我翻以前在Luogu上写的题解时,突然发现放错代码了,然后被一堆人\(hack\)--蓝瘦啊\(ORZ ...

  8. 【bzoj4720】[NOIP2016]换教室 期望dp

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  9. NOIP2016换教室 BZOJ 4720

    BZOJ 4720 换教室 题目描述: 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上 ...

随机推荐

  1. Dynamics CRM项目实例之六:积分管理,汇总字段,计算字段,快速查看视图

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复137或者20141228可方便获取本文,同时可以在第一时间得到我发布的最新的博文信息,follow me!        博文讲述的主要是如 ...

  2. 安卓基础之通过Intent跳转Activity

    通过Intent跳转Activity   一.通过意图开启Activity的方式:   隐式意图:通过指定一组数据或者动作实现 Intent intent=new Intent(); intent.s ...

  3. 理解java的三种代理模式

    代理模式是什么 代理模式是一种设计模式,简单说即是在不改变源码的情况下,实现对目标对象的功能扩展. 比如有个歌手对象叫Singer,这个对象有一个唱歌方法叫sing(). 1 public class ...

  4. XUnit 依赖注入

    XUnit 依赖注入 Intro 现在的开发中越来越看重依赖注入的思想,微软的 Asp.Net Core 框架更是天然集成了依赖注入,那么在单元测试中如何使用依赖注入呢? 本文主要介绍如何通过 XUn ...

  5. Linux Logwatch的学习总结

    Logwatch功能介绍 Logwatch是一款Perl脚本编写的.开源的日志分析工具.它能对原始的日志文件进行解析并转换成结构化格式的文档,也能根据您的使用情况和需求来定制报告.Logwatch的特 ...

  6. spring boot 中使用 jpa以及jpa介绍

    1.什么是jpa呢?JPA顾名思义就是Java Persistence API的意思,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中.12.jpa具有什么 ...

  7. powerdesigner生成mysql带注释的ER图

    1.安装PowerDesigner的 参考 https://blog.csdn.net/sinat_34104446/article/details/79885141 2配置逆向工程 2.1新建模型p ...

  8. 英语背单词app

    乐词 √ 真人发音 词根词缀 小组计划及时复习 真人例句 墨墨 单词量测试做的特别好 扇贝 哈哈哈,没用过 百词斩 同样25个单词,我在乐词中背了20分钟,在百词斩中需要60分钟. 原因在于 要记单词 ...

  9. Saltstack_使用指南07_远程执行-执行模块

    1. 主机规划 远程执行教程文档 https://docs.saltstack.com/en/latest/topics/tutorials/modules.html 所有模块文档 https://d ...

  10. json 解析错误的问题

    “/”应用程序中的服务器错误. 未能加载文件或程序集“Newtonsoft.Json, Version=6.0.0.0, Culture=neutral, PublicKeyToken=30ad4fe ...