完全平方数(bzoj 2440)
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50
/*
有一个很显然的结论是最后的答案肯定不超过n*2,然后接可以二分答案,接下来就是判断有多少<=x的数满足它的质因数的指数都是1。
一个方法是去排除所有i^2的倍数(i为素数),这会让人联想到容斥?
ans=n-奇数个质数的平方的倍数的个数+偶数个质数的平方的倍数的个数。
利用莫比乌斯函数可以完美的解决这个问题 -1(i为奇数个素数的乘积)
mul[i] = 1(i为偶数个素数的乘积)
0(i有某个因数的指数不为1)
*/
#include<cstdio>
#include<cmath>
#include<iostream>
#define N 100000
#define lon long long
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
using namespace std;
int f[N],prime[N],miu[N];lon n;
void init(){
miu[]=;
for(int i=;i<N;i++){
if(!f[i]){
prime[++prime[]]=i;
miu[i]=-;
}
for(int j=;j<=prime[];j++){
if(i*prime[j]>=N) break;
f[i*prime[j]]=;
miu[i*prime[j]]=-miu[i];
if(i%prime[j]==){
miu[i*prime[j]]=;
break;
}
}
}
}
lon check(lon mid){
lon t=sqrt(mid),tot=;
for(int i=;i<=t;i++)
tot+=miu[i]*(mid/(lon)(i*i));
return tot;
}
int main(){
int T;scanf("%d",&T);init();
while(T--){
scanf(LL,&n);
lon l=,r=n*,ans;
while(l<=r){
lon mid=l+r>>;
if(check(mid)>=n) r=mid-,ans=mid;
else l=mid+;
}
printf(LL,ans);printf("\n");
}
return ;
}
完全平方数(bzoj 2440)的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)
完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- BZOJ 2440 完全平方数
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 966 Solved: 457 [Submit][Sta ...
随机推荐
- linux - 权限解析
当你在linux下用命令ll 或者ls -la的时候会看到这些字眼,这些字眼表示为不同用户组的权限:r:read就是读权限 --数字4表示w:write就是写权限 --数字2表示 x:excute就是 ...
- 基于arcgis api for js高速公路智能化智慧公路养护WebGIS开源系统
伴随着高速公路建设进程加快,其涉及信息量增大.类型多样.地点分布广,传统的信息管理方式已不适应公路建设迅速发展的需要,而目前能对高速公路在设计.施工.养护等阶段的各类信息综合进行管理的信息系统尚较少见 ...
- linux虚拟机配置网络
第一步.网络模式设置为桥接模式 第二步.设置ip和掩码 vim /etc/sysconfig/network-scripts/ifcfg-ens33 ens33为当前机器的网卡名称 在文件尾部添 ...
- Java基础面试操作题: File IO 文件过滤器FileFilter 练习 把一个文件夹下的.java文件复制到另一个文件夹下的.txt文件
package com.swift; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File ...
- skynet 学习笔记-sproto模块(2)
云风在skynet中继承了sproto的传输协议,对比protobuf的好处是,能明文看到传输内容,而且skynet不需要protobuf这么功能,所以云风也建议在lua层使用sproto来作为sky ...
- 【Ubuntu】ubuntu基本操作命令
本文主要是用于记录ubuntu中会使用到的命令,但是有不是特别常用的,用于自己后续查阅使用. 1.查询ubuntu版本信息 方法一: cat /etc/issue 方法二: sudo lsb_rele ...
- biological clock--class
'''this application aimed to cauculate people's biological block about emotional(28), energy(23),int ...
- poj 1017 装箱子问题 贪心算法
题意:有1*1到6*6的的东西,需要用6*6的箱子将它们装起来.问:至少需要多少个6*6箱子 思路: 一个瓶子怎么装东西最多?先装石头,在装沙子,然后装水. 同样放在本题就是先装6*6然后5*5... ...
- debian 升级glibc
原因 wheezy是2.13,编译android4.4 需要2.14的,报错如下: rebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.8-linar ...
- SPOJ 1825 Free tour II 树分治
题意: 给出一颗边带权的数,树上的点有黑色和白色.求一条长度最大且黑色节点不超过k个的最长路径,输出最长的长度. 分析: 说一下题目的坑点: 定义递归函数的前面要加inline,否则会RE.不知道这是 ...