完全平方数(bzoj 2440)
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9, T ≤ 50
/*
有一个很显然的结论是最后的答案肯定不超过n*2,然后接可以二分答案,接下来就是判断有多少<=x的数满足它的质因数的指数都是1。
一个方法是去排除所有i^2的倍数(i为素数),这会让人联想到容斥?
ans=n-奇数个质数的平方的倍数的个数+偶数个质数的平方的倍数的个数。
利用莫比乌斯函数可以完美的解决这个问题 -1(i为奇数个素数的乘积)
mul[i] = 1(i为偶数个素数的乘积)
0(i有某个因数的指数不为1)
*/
#include<cstdio>
#include<cmath>
#include<iostream>
#define N 100000
#define lon long long
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
using namespace std;
int f[N],prime[N],miu[N];lon n;
void init(){
miu[]=;
for(int i=;i<N;i++){
if(!f[i]){
prime[++prime[]]=i;
miu[i]=-;
}
for(int j=;j<=prime[];j++){
if(i*prime[j]>=N) break;
f[i*prime[j]]=;
miu[i*prime[j]]=-miu[i];
if(i%prime[j]==){
miu[i*prime[j]]=;
break;
}
}
}
}
lon check(lon mid){
lon t=sqrt(mid),tot=;
for(int i=;i<=t;i++)
tot+=miu[i]*(mid/(lon)(i*i));
return tot;
}
int main(){
int T;scanf("%d",&T);init();
while(T--){
scanf(LL,&n);
lon l=,r=n*,ans;
while(l<=r){
lon mid=l+r>>;
if(check(mid)>=n) r=mid-,ans=mid;
else l=mid+;
}
printf(LL,ans);printf("\n");
}
return ;
}
完全平方数(bzoj 2440)的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)
完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- BZOJ 2440 完全平方数
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 966 Solved: 457 [Submit][Sta ...
随机推荐
- Java 从资源文件(.properties)中读取数据
在Java工程目录src下,创建一个后缀为.properties的文件,例如db.properties 文件中的内容如下(键=值): name=mk age=123 address=China 在程序 ...
- 主题模型LDA及在推荐系统中的应用
1 关于主题模型 使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版. 隐含狄利克雷分布简称LDA(latent dirichlet allocation ...
- Linux 命令、配置文件及操作
Linux 命令.配置文件及操作 命令 命令 参数 说明 A alias.unalias 命令别名 B C cat 查看文件内容 cd 切换目录 chown 修改拥有着 chgrp 修改所属组 chm ...
- Linux中的常见命令
1. ls 查看当前目录下的所有文件夹 2. pwd 查看当前所在的文件夹 3. cd 目录名 切换文件夹 4. touch 文件名 创建文件 5. mkdir 目录名 创建文件夹 6 ...
- C语言中的32个关键字
C语言中的32个关键字 数据类型关键字(12个) (1) char:声明字符型变量或函数 (2) double:声明双精度变量或函数 (3) enum:声明美剧类型 (4) ...
- LeetCode之Weekly Contest 101
前一段时间比较忙,而且做这个对于我来说挺耗时间的,已经间隔了几期的没做总结了,后面有机会补齐.而且本来做这个的目的就是为了防止长时间不做把编程拉下,不在追求独立作出所有题了.以后完赛后稍微尝试下,做不 ...
- python入门:while循环里面True和False的作用,真和假
#!/usr/bin/env python # -*- coding:utf-8 -*- #while循环里面True和False的作用,真和假 """ n1等于真(Tr ...
- paper:synthesizable finit state machine design techniques using the new systemverilog 3.0 enhancements之enhanced coding styles
1.ANSI style 的代码比较紧凑. 下面规范推荐,比较好. 下面是带有parameter的module header的完整规范 一般1bit ,大家都是wire signal1 = gen_s ...
- python向上取整 向下取整
向上取整 ceil() 函数返回数字的向上取整整数,就是返回大于等于变量的最近的整数. ceil()是不能直接访问的,需要导入 math 模块. import math math.ceil( x ) ...
- Java策略模式(Strategy)
一.定义 定义一组算法,将每个算法都封装起来,并且使它们之间可以互换.策略模式使这些算法在客户端调用它们的时候能够互不影响地变化.(Java的TreeSet集合中,构造方法可传入具体的比较器对象以实现 ...