[PE182]RSA encryption
https://projecteuler.net/problem=182
题意:
找出满足下列条件的所有$e$ 的和,
- $1 < e < \varphi \left( {1009,3643} \right)$
- $gcd(e,φ)=1$
- 满足${m^e} \equiv m{\rm{ }}\bmod {\rm{ }}n$ 的$m$的个数最小
解答:
这道题最重要的就是解决这个问题:
${m^e} \equiv m{\rm{ }}\bmod {\rm{ }}n$ 中$e$确定时,$m$的取值的个数。
由于n是合数,且 $n = p*q$ ,所以先考虑${m^e} \equiv m{\rm{ }}\bmod {\rm{ }}p$ 和 ${m^e} \equiv m{\rm{ }}\bmod {\rm{ }}q$ ,
$m({m^{e - 1}} - 1) \equiv 0{\rm{ }}\bmod {\rm{ }}p$ , $p$ 是质数
- $m==0$ ,恒成立
- $m!=0$ ,${m^{e - 1}} \equiv 1\bmod {\rm{ }}p$
考虑 ${a^b} \equiv 1\bmod p$ ,$a$ 、$p$ 互素,此式中$b$确定时,$a$的个数
因为$p$ 为素数,所以必存在原根$r$ ,使得$ a= {r^k}$ ,
${r^{kb}} = 1{\rm{ }}\bmod {\rm{ }}p$
这里很容易联想到关于${a^k}\bmod {\rm{ }}p$的阶那个公式,
$ord({r^b}) = \frac{{\varphi (p)}}{{(\varphi (p),b)}},(r,p) = = 1$
变换一下位置,
$(\varphi (p),b) = \frac{{\varphi (p)}}{{ord({r^b})}},(r,p) = = 1$
${r^{ord({r^b})}}$ ,${r^{2ord({r^b})}}$ ,...,${r^{(\varphi (p ),b )ord({r^b})}}$就是使上式成立的$a$的可能取值,
所以左边就是解的个数。
所以最初的解为$\gcd (\varphi (p),b) = \gcd (p - 1,b)$
回到上面,还有$m==0$ 的情况,
所以解为$\gcd (\varphi (p),b)+1 = \gcd (p - 1,b)+1$
再看如何解决模数不为质数的问题,这里 就需要用到中国剩余定理,根据中国剩余定理,每一对$p$ 和 $q$ ,就会产生一个解,依据乘法原理,所以最后的解为$[\gcd (p - 1,e - 1) + 1]*[\gcd (q - 1,e - 1) + 1]$
接下来:就是枚举$e$ 的问题了
- 直接进行暴力
- 观察$e$,因为$\gcd ((p - 1)(q - 1),e ) = = 1$ ,故$e$ 为奇数,$e-1$ 为偶数, $\gcd (e - 1,p - 1) > = 2$ ,
$\gcd (e - 1,q - 1) > = 2$ ,这里确定了两个gcd的下界的最小值,而且显然这两个下界在枚举$e$ 的过程中是可以取到的,所以这里可以直接判断最小的情况。
复杂度:$O(n\log n)$ ,其中$logn$ 是辗转相除的复杂度,证明见维基百科。
代码1:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=<<;
ll p=,q=,factor[];
ll n=q*p,phi=(p-)*(q-),mi=inf,ans;
int main(){
for(ll i=;i<phi;++i) if(__gcd(i,phi)==) factor[i]=(__gcd(i-,p-)+)*(__gcd(i-,q-)+),mi=min(mi,factor[i]);
for(ll i=;i<phi;++i) if(factor[i]==mi) ans+=i;
printf("%lld\n",ans);
}
代码2:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=<<;
ll p=,q=;
ll n=q*p,phi=(p-)*(q-),ans;
int main(){
for(ll i=;i<phi;++i) if(__gcd(i,phi)==&&__gcd(i-,q-)==&&__gcd(i-,p-)==) ans+=i;
printf("%lld\n",ans);
}
[PE182]RSA encryption的更多相关文章
- PKCS #1 RSA Encryption Version 1.5
PKCS #1 RSA Encryption Version 1.5 在进行RSA运算时需要将源数据D转化为Encryption block(EB).其中pkcs1padding V1.5的填充模式 ...
- PKCS #1 RSA Encryption Version 1.5 填充方式
在进行RSA运算时需要将源数据D转化为Encryption block(EB).其中pkcs1padding V1.5的填充模式安装以下方式进行 (1) EB = 00+ BT+PS +00 + D ...
- RSA算法
RSA.h #ifndef _RSA_H #define _RSA_H #include<stdio.h> #include<iostream> #include<mat ...
- Windows phone应用开发[19]-RSA数据加密
在这个系列的第十六章节中Windows phone应用开发[16]-数据加密 中曾详细讲解过windows phone 常用的MD5,HMAC_MD5,DES,TripleDES[3DES] 数据加密 ...
- rsa && sha1 js code
jsbn.js /* * Copyright (c) 2003-2005 Tom Wu * All Rights Reserved. * * Permission is hereby granted, ...
- Go加密解密之RSA[转]
安全总是很重要的,各个语言对于通用的加密算法都会有实现.前段时间,用Go实现了RSA和DES的加密解密,在这分享一下.(对于RSA和DES加密算法本身,请查阅相关资料) 在PHP中,很多功能经常是一个 ...
- RSA (cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem) RSA is one of the first practical实用性的 public-key cr ...
- Java 进行 RSA 加解密时不得不考虑到的那些事儿
1. 加密的系统不要具备解密的功能,否则 RSA 可能不太合适 公钥加密,私钥解密.加密的系统和解密的系统分开部署,加密的系统不应该同时具备解密的功能,这样即使黑客攻破了加密系统,他拿到的也只是一堆无 ...
- OpenSSL中的大数接口与基于其的自用RSA加密接口设计
本文记录了初次接触OpenSSL中的大数模块,重温了RSA加密流程,使用OpenSSL的接口包装成自用RSA加密接口,并且利用自己的接口演示了Alice与Bob通过RSA加密进行通讯的一个示例. 概览 ...
随机推荐
- 兔子的晚会 2016Vijos省选集训 day1
兔子的晚会 (xor.c/pas/cpp)============================= 很久很久之前,兔子王国里居住着一群兔子.每到新年,兔子国王和他的守卫总是去现场参加晚会来欢庆新年. ...
- scrapy架构解析
- MongoDB的对象的创建
package com.voice.db; import com.mongodb.DB; import com.mongodb.DBCollection; import com.mongodb.Mon ...
- windowsphone8.1学习笔记之应用数据(二)
上一篇说了应用数据的应用设置,这篇说说应用文件,应用文件主要分为三种:本地应用文件.漫游应用文件和临时应用文件. 获取根目录方法如下,都是返回一个StorageFolder对象(稍后介绍这个). // ...
- html学习笔记(2)-字母大小写转换练习
主要应用了text-transform属性值: uppercase:所有单词的字母都大写: lowercase:所有单词的字母都小写: capitalize:每个单词的首字母都大写: none:默认值 ...
- Linux 日志命令
当日志文件存储日志很大时,我们就不能用vi直接进去查看日志,需要Linux的命令去完成我们的查看任务 Log位置: /var/log/message 系统启动后的信息和错误日志,是Red Hat Li ...
- php依据地理坐标获取国家、省份、城市,及周边数据类
功能:当App获取到用户的地理坐标时,能够依据坐标知道用户当前在那个国家.省份.城市.及周边有什么数据. 原理:基于百度Geocoding API 实现.须要先注冊百度开发人员.然后申请百度AK(密钥 ...
- POJ 2063 Investment (完全背包)
A - Investment Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Subm ...
- Cannot load JDBC driver class 'com.mysql.jdbc.Driver '
最近在学JAVA, SSM, 照着网上的例子系统启动后总是报这个错(IDE :IEDA): HTTP Status 500 - Request processing failed; nested ex ...
- (转)select、poll、epoll之间的区别总结[整理]
select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作.但select ...