Description

给定一个非负整数序列{a},初始长度为N。

有M个操作,有以下两种操作类型:

1、Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1。

2、Q l r x:询问操作,你需要找到一个位置p,满足l<=p<=r,使得:

a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。


Input

第一行包含两个整数 N ,M,含义如问题描述所示。

第二行包含 N个非负整数,表示初始的序列 A 。

接下来 M行,每行描述一个操作,格式如题面所述。

Output

假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。


Sample Input

5 5

2 6 4 3 6

A 1

Q 3 5 4

A 4

Q 5 7 0

Q 3 6 6

Sample Output

4

5

6


Hints

对于测试点 1-2,N,M<=5 。

对于测试点 3-7,N,M<=80000 。

对于测试点 8-10,N,M<=300000 。

其中测试点 1, 3, 5, 7, 9保证没有修改操作。

0<=a[i]<=10^7。


Solution

又是一道可持久化 Trie 的套路题,不过一开始被建树难住了...

分析题目:

  • 异或有基本性质即 : \({({x}\bigoplus{y})}\bigoplus{y}=x\) .
  • 此题要求我们求 \({({a_{p}}\bigoplus{a_{i}})}\bigoplus{a_{n}}\)的值,即\({sum_{p-1}}\bigoplus{sum_{n}}\),其中\(sum\)代表从根节点出发的异或前缀和.

那么我们思路也就很明了了。

我们在Trie中插入每一个前缀和,然后在查询的时候直接查询\((l-2,r-1)\)即可。


代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=300008;
int T[maxn*2],ch[2*maxn*32][2];
int num[2*maxn*32],n,m;
ll a[maxn*2],tot; int insert(int pre,ll x,int v)
{
int rt=++tot;
ll c=((x>>v)&1);
ch[rt][0]=ch[pre][0];
ch[rt][1]=ch[pre][1];
num[rt]=num[pre]+1;
if(v>=0)
ch[rt][c]=insert(ch[pre][c],x,v-1);
return rt;
}
ll ans;
void query(int l,int r,ll x,int v)
{ ll c=((x>>v)&1);
if(num[ch[r][c^1]]-num[ch[l][c^1]]>0)
{
ans+=(1<<v);
if(v>=0)
query(ch[l][c^1],ch[r][c^1],x,v-1);
}
else
if(v>=0)
query(ch[l][c],ch[r][c],x,v-1); } ll sum[maxn*2];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]^a[i];
for(int i=1;i<=n;i++)
T[i]=insert(T[i-1],sum[i],30); for(int i=1;i<=m;i++)
{
ll x,y,z;
char ch[10]; scanf("%s ",ch);
if(ch[0]=='A')
{
scanf("%lld",&x);
n++;
sum[n]=sum[n-1]^x;
T[n]=insert(T[n-1],sum[n],30);
}
else
{
scanf("%lld%lld%lld",&x,&y,&z);
z=z^sum[n];
ans=0; if(y==1){cout<<z<<endl;continue;}
query(T[x-2],T[y-1],z,30);
cout<<ans<<endl;
}
}
}

[BZOJ3261] 最大异或和 (异或前缀和,可持久化Trie)的更多相关文章

  1. BZOJ3261: 最大异或和(可持久化trie树)

    题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候 ...

  2. BZOJ_3689_异或之_可持久化Trie+堆

    BZOJ_3689_异或之_可持久化Trie+堆 Description 给定n个非负整数A[1], A[2], ……, A[n]. 对于每对(i, j)满足1 <= i < j < ...

  3. [十二省联考2019]异或粽子(堆+可持久化Trie)

    前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...

  4. BZOJ4103 [Thu Summer Camp 2015]异或运算 【可持久化trie树】

    题目链接 BZOJ4103 题解 一眼看过去是二维结构,实则未然需要树套树之类的数据结构 区域异或和,就一定是可持久化\(trie\)树 观察数据,\(m\)非常大,而\(n\)和\(p\)比较小,甚 ...

  5. 【bzoj3689】异或之 可持久化Trie树+堆

    题目描述 给定n个非负整数A[1], A[2], ……, A[n].对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n ...

  6. bzoj3261: 最大异或和 可持久化trie

    题意:给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  7. 【bzoj3261】【最大异或和】可持久化trie树+贪心

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非 ...

  8. 【bzoj3261】最大异或和 可持久化Trie树

    题目描述 给定一个非负整数序列 {a},初始长度为 N.       有M个操作,有以下两种操作类型:1.A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1.2.Q l r x:询问操 ...

  9. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

随机推荐

  1. spring maven 包

    <spring-framework.version>.RELEASE</spring-framework.version> <dependency> <gro ...

  2. no pointer in java

    Why there are no pointers in Java? In Java there are references instead of pointers. These reference ...

  3. 汉明码(Hamming Code)原理及实现

    汉明码实现原理 汉明码(Hamming Code)是广泛用于内存和磁盘纠错的编码.汉明码不仅可以用来检测转移数据时发生的错误,还可以用来修正错误.(要注意的是,汉明码只能发现和修正一位错误,对于两位或 ...

  4. 【线性基】bzoj2322: [BeiJing2011]梦想封印

    线性基的思维题+图常见套路 Description 渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解. 为了分析一种奇特的称为梦想封印(Fantasy Seal)的特技,需要引 ...

  5. Spring Security 与 OAuth2(介绍)

    https://www.jianshu.com/p/68f22f9a00ee Spring Security 与 OAuth2(介绍) 林塬 2018.01.23 11:14* 字数 3097 阅读 ...

  6. 将远程分支拷贝到本地,并更新代码push到原分支

    第一步:git clone +主分支 第二步:git fetch origin 分支名 第三步:git checkout -b 分支名 origin/分支名 第四步:git pull origin 分 ...

  7. linux 上安装配置l2tp的客户端

    有些时候我们外网linux服务器需要访问内网的服务器,这时候就需要在外网服务器上配置l2tp的客户端,连接到VPN访问内网服务器. 安装: yum -y install xl2tpd ppp 安装成功 ...

  8. 如何在 CentOS 7 上安装 Python 3

    当前最新的 CentOS 7.5 默认安装的是 Python 2.7.5,并且默认的官方 yum 源中不提供 Python 3 的安装包.这里主要介绍两种在 CentOS 7 中安装 Python 3 ...

  9. LeetCode(168) Excel Sheet Column Title

    题目 Given a positive integer, return its corresponding column title as appear in an Excel sheet. For ...

  10. PTA 7-2 符号配对

    直接用栈模拟即可,数组可做,但因为这节数据结构是栈,为了期末考试还是手写一下栈的操作,值得注意的是,这道题用gets函数在PTA上会编译错误,用scanf("%[^\n]", st ...