题目链接


Solution

我只会60分暴力...

正解是 DP.

状态定义:

\(f[i][j]\) 代表 \(1\) 到 \(i\) 比最短路长 \(j\) 的方案数.

那么很显然最后答案也就是 \(\sum^{i=0}_{k}f[n][i]\).

转移方程:

对于任一状态 \(f[i][j]\) 我们对可以到达它的点 \(v\) 进行讨论:

  1. \(v\) 本身为 \(1\) 到 \(i\) 的最短路上的节点,则此时 $$f[i][j]+=f[v][j]$$
  2. 若 \(v\) 并非到其最短路上的点.

    那么此时从 \(v\) 到 \(i\) 相当于多走了\((dis[i]-(dis[v]+w_{v,i}))\)这么长.

    所以此时 $$f[i][j]+=f[v][j-(dis[i]-(dis[v]+w_{v,i}))]$$

然后很明显 \(1\) 也可以表示为 \(2\) 状态.

所以 \(2\) 状态即为总动态转移方程.

\(0\) 环:

由于题目中给出的图并非一张 \(DAG\) ,所以可能存在 \(0\) 环的情况.

如果 \(DP\) 从前往后推,那么可以使用拓扑排序.

记忆化搜索则需要判断一种状态是否在一次搜索时出现多次.

此处给出记忆化搜索的代码.

Code

#include<bits/stdc++.h>
#define in(x) x=read()
#define ll long long
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=100008; struct node{int u; ll d;
bool operator <(const node& kkk)const
{return d>kkk.d;}
};
struct sj{int to,next;ll w;}a[maxn*4];
int head[maxn],size,Head[maxn];
ll f[maxn][52],dis[maxn],ans;
int n,m,k,mod,c[maxn][52],ff;
int v[maxn][52],vis[maxn]; int read()
{
char ch=getchar(); int f=1,w=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
return f*w;
} void add(int x,int y,int w)
{a[++size].to=y;a[size].next=head[x];head[x]=size;a[size].w=w;}
void Add(int x,int y,int w)
{a[++size].to=y;a[size].next=Head[x];Head[x]=size;a[size].w=w;} void Dijkstra()
{
priority_queue<node>q;
memset(dis,127,sizeof(dis));
q.push((node){1,0});
dis[1]=0;
while(!q.empty())
{
node x=q.top();q.pop();
int u=x.u;
for(int i=head[u];i;i=a[i].next)
{
int tt=a[i].to;
if(dis[tt]>dis[u]+a[i].w)
{
dis[tt]=dis[u]+a[i].w;
q.push((node){tt,dis[tt]});
}
}
}
return;
} ll dfs(int x,int kk)
{
if(v[x][kk])return f[x][kk];
v[x][kk]=1;
c[x][kk]=1;
if(ff==1)return 0;
for(int i=Head[x];i;i=a[i].next)
{
int tt=a[i].to;
int t=dis[x]+kk-a[i].w-dis[tt];
if(t<0)continue;
if(c[tt][t]){ff=1;return 0;}
f[x][kk]+=dfs(tt,t);
f[x][kk]%=mod;
}
c[x][kk]=0;
return f[x][kk];
} int main()
{
int t; in(t);
while(t--)
{
//Init
memset(c,0,sizeof(c));
memset(v,0,sizeof(v));
memset(dis,127,sizeof(dis));
memset(Head,0,sizeof(Head));
memset(head,0,sizeof(head));
memset(a,0,sizeof(a)); size=0;
memset(f,0,sizeof(f)); ff=0; //Input
in(n); in(m); in(k); in(mod);
for(int i=1;i<=m;i++)
{
int x,y,z; in(x),in(y),in(z);
add(x,y,z); Add(y,x,z);
}
Dijkstra(); //dfs + DP
ans=0;
f[1][0]=v[1][0]=1;
for(int i=0;i<=k;i++)
{
dfs(n,i),ans+=f[n][i],ans%=mod;
if(ff==1)break;
}
dfs(n,k+1);
if(ff==1)
{printf("-1\n");continue;} printf("%lld\n",ans);
}
}

[NOIP2017] 逛公园 (最短路,动态规划&记忆化搜索)的更多相关文章

  1. Luogu 3953[NOIP2017] 逛公园 堆优化dijkstra + 记忆化搜索

    题解 首先肯定是要求出单源最短路的,我用了堆优化dijikstra ,复杂度 mlogm,值得拥有!(只不过我在定义优先队列时把greater 打成了 less调了好久 然后我们就求出了$i$到源点的 ...

  2. sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)

    Description In the two-player game "Two Ends", an even number of cards is laid out in a ro ...

  3. 【NOIP2017】逛公园 拆点最短路+拓扑(记忆化搜索

    题目描述 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策 ...

  4. Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)

    描述 http://codevs.cn/problem/1017/ 给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大. 1017 乘积最大 2000年NOIP全国联赛普及组NOIP全国联赛提 ...

  5. Poj-P1088题解【动态规划/记忆化搜索】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: http://poj.org/problem?id=1088 题目描述: 区域由一个二维数组给 ...

  6. UVA_437_The_Tower_of_the_Babylon_(DAG上动态规划/记忆化搜索)

    描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  7. 滑雪---poj1088(动态规划+记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 有两种方法 一是按数值大小进行排序,然后按从小到大进行dp即可: #include <iostream> #incl ...

  8. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  9. [NOIP2017]逛公园 最短路图 拓扑序DP

    ---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...

随机推荐

  1. AWVS12 防止反复注册

    以管理员权限运行cmd,输入以下内容: cacls "C:\ProgramData\Acunetix\shared\license." /t /p everyone:r 如图:

  2. Dojo操作dom元素的样式

    1.使用dom-style的set方法,可以直接设置dom元素的样式属性,这和使用dom元素的style属性效果一样. 2.使用dom-class的replace方法可以替换某个dom元素的样式,ad ...

  3. 安装 Win7 的系统的时候如何分区

    解决方案 在安装Win7的系统的时候,可以使用下面方法进行分区: 1. 在出现同意许可条款,勾选“我接受许可条款(A)”后,点击下一步,然后继续下面操作: 2. 进入分区界面,点击“驱动器选项(高级) ...

  4. Js笔记-第17课

    课 // 作业 //深度拷贝 var obj = { name:'rong', age:'25', card:['visa','alipay'], nam :['1','2','3','4','4'] ...

  5. TreeMap 底层是红黑树 排序是根据key值进行的 添加元素时异常 Comparable异常 Comparator比较自定义对象放在键的位置

    package com.swift; import java.util.Comparator; import java.util.HashMap; import java.util.Iterator; ...

  6. 转 WebService两种发布协议--SOAP和REST的区别

    转发文章 https://blog.csdn.net/zl834205311/article/details/62231545?ABstrategy=codes_snippets_optimize_v ...

  7. Golang TCP转发到指定地址

    Golang TCP转发到指定地址 第二个版本,设置指定ip地址 代码 // tcpForward package main import ( "fmt" "net&qu ...

  8. FTP服务-实现vsftpd虚拟用户

    前几篇介绍了基础,这篇将具体实现几个案例 实现基于文件验证的vsftpd虚拟用户,每个用户独立一个文件夹 1.创建用户数据库文件 vim /etc/vsftpd/vusers.txt qq cento ...

  9. Thinkphp5 同时连接两个库

    新建api/user.php <?php /** * Created by PhpStorm. * User: Administrator * Date: 2018/8/25 * Time: 1 ...

  10. 使用python3调用MyQR库生成动态二维码(附源代码)

    可生成普通二维码.带图片的艺术二维码(黑白与彩色).动态二维码(黑白与彩色). GitHub:https://github.com/sylnsfar/qrcode 中文版:https://github ...