已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始。即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1)

现有一个 “马”(也译作 “骑士”)位于 (r, c) ,并打算进行 K 次移动。

如下图所示,国际象棋的 “马” 每一步先沿水平或垂直方向移动 2 个格子,然后向与之相垂直的方向再移动 1 个格子,共有 8 个可选的位置。

class Solution(object):
def knightProbability(self, N, K, r, c):
"""
:type N: int
:type K: int
:type r: int
:type c: int
:rtype: float
"""
dp = []
count = 0.0
for i in range(K+1):
temp1 = []
for j in range(N):
temp1.append([0] * N)
dp.append(temp1)
dp[0][r][c] = 1
directions = [(1,2),(1,-2),(2,1),(2,-1),(-1,2),(-1,-2),(-2,1),(-2,-1)]
for n in range(1,K+1):
for x in range(N):
for y in range(N):
for (X,Y) in directions:
if (x+X) >= 0 and (x+X) < N and (y+Y) >= 0 and (y+Y) < N:
dp[n][x][y] += dp[n-1][x+X][y+Y] #计算第n次棋盘中每个位置可能出现的次数
for i in dp[-1]:
for j in i:
count += j
return count / 8 ** K

LeetCode668马在棋盘上的概率的更多相关文章

  1. Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)

    688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...

  2. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  3. leetcode 688. “马”在棋盘上的概率

    题目描述: 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 ( ...

  4. 688. Knight Probability in Chessboard棋子留在棋盘上的概率

    [抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  5. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  6. C#LeetCode刷题-动态规划

    动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串   22.4% 中等 10 正则表达式匹配   18.8% 困难 32 最长有效括号   23.3% 困难 44 通配符匹配   17.7% ...

  7. leetcode动态规划题目总结

    Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...

  8. [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  9. BZOJ4808马——二分图最大独立集

    题目描述 众所周知,马后炮是中国象棋中很厉害的一招必杀技."马走日字".本来,如果在要去的方向有别的棋子挡住(俗 称"蹩马腿"),则不允许走过去.为了简化问题, ...

随机推荐

  1. Js面向对象之观察者模式

    //模拟一个目标可能拥有的一些列依赖 function ObserverList() { this.observerList = []; }; //添加一个观察者 ObserverList.proto ...

  2. vue-绑定style、css

    class.style的绑定1.在 v-bind 用于 class 和 style 时, Vue.js 专门增强了它.表达式的结果类型除了字符串之外,还可以是对象或数组2.绑定css2.1对象绑定2. ...

  3. NYOJ-198-数数

    原题地址 数数 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 我们平时数数都是喜欢从左向右数的,但是我们的小白同学最近听说德国人数数和我们有些不同,他们正好和我们相 ...

  4. POJ 2010 Moo University - Financial Aid(堆维护滑窗kth,二分)

    按照score排序,贪心,从左到右用堆维护并且记录前面的最小N/2个花费之和. 然后从右向左枚举中位数,维护N/2个数之和加上并判断是否满足条件.(stl的队列没有clear(),只能一个一个pop. ...

  5. oc语言特性

    It’s a superset of the C programming language and provides object-oriented capabilities and a dynami ...

  6. 深入理解计算机系统_3e 第十章家庭作业 CS:APP3e chapter 10 homework

    10.6 1.若成功打开"foo.txt": -->1.1若成功打开"baz.txt": 输出"4\n" -->1.2若未能成功 ...

  7. 记录JQ-WEUI中滚动加载的一个BUG

    最近写微信公众号,用到的技术栈是jq+vue的混合开发,采用的UI是移动端比较火的WEUI,在微信开发中应该较广泛.个人看惯了elementUI文档,相对于饿了么组件文档的详细,WEUI的文档还是比较 ...

  8. Django项目中"expected str, bytes or os.PathLike object, not list"错误解决:

    对于这个错误,也在于自己对django基础的掌握不是很牢固,忽略了MEDIA_ROOT的类型是string,而不是list. 错误的写法: MEDIA_ROOT = [ os.path.join(BA ...

  9. Java开发学生管理系统

    Java 学生管理系统 使用JDBC了链接本地MySQL 数据库,因此在没有建立好数据库的情况下没法成功运行 (数据库部分, Java界面部分, JDBC部分) 资源下载: http://downlo ...

  10. 使用 CAST

    使用 CAST: CAST ( expression AS data_type ) 使用 CONVERT: CONVERT (data_type[(length)], expression [, st ...