CSU-2019 Fleecing the Raffle

Description

A tremendously exciting raffle is being held, with some tremendously exciting prizes being given out. All you have to do to have a chance of being a winner is to put a piece of paper with your name on it in the raffle box. The lucky winners of the p prizes are decided by drawing p names from the box. When a piece of paper with a name has been drawn it is not put back into the box – each person can win at most one prize. Naturally, it is against the raffle rules to put your name in the box more than once. However, it is only cheating if you are actually caught, and since not even the raffle organizers want to spend time checking all the names in the box, the only way you can get caught is if your name ends up being drawn for more than one of the prizes. This means that cheating and placing your name more than once can sometimes increase your chances of winning a prize. You know the number of names in the raffle box placed by other people, and the number of prizes that will be given out. By carefully choosing how many times to add your own name to the box, how large can you make your chances of winning a prize (i.e., the probability that your name is drawn exactly once)?

Input

There will be several test cases. Each case consists of a single line containing two integers n and p ( 2≤p≤n≤1062≤p≤n≤106 ), where n is the number of names in the raffle box excluding yours, and p is the number of prizes that will be given away.

Output

Output a single line containing the maximum possible probability of winning a prize, accurate up to an absolute error of 10−6.

Sample Input

3 2
23 5

Sample Output

0.6
0.45049857550

题解

题意:抽奖活动,可以放入任意张有自己名字的纸片参与抽奖,当且仅当带有自己名字的纸片被抽取两次时会被抓住,视作失败。共抽取p件奖品,参与抽奖的有n个人,问自己最大获奖概率是多少

设x为放入的自己名字的纸片个数,则放入x张获奖概率为

\[\frac{C_x^1Cn^{p-1}}{C_{n+x}^p}=\frac{x\times p}{n+1}\prod_{i=2}^x\frac{n-p+i}{n+i}
\]

当从x-1到x,概率乘以\(\frac{x}{x - 1}\times\frac{n-p+x}{n+x}\),递推求概率,当概率开始变小时终止循环,输出答案

#include<bits/stdc++.h>
using namespace std;
int main() {
int n, p;
while (scanf("%d%d", &n, &p) != EOF) {
double now = (double)p / (double)(n + 1.0);
double ans = 0.0;
int x = 2;
while (1) {
if (ans > now) break;
else ans = now;
now *= (double)x / (double)(x - 1.0) * (double)(n + x - p) / (double)(n + x);
x++;
}
printf("%.11lf", ans);
}
}
/**********************************************************************
Problem: 2019
User: Artoriax
Language: C++
Result: AC
Time:28 ms
Memory:2024 kb
**********************************************************************/

CSU-2019 Fleecing the Raffle的更多相关文章

  1. Fleecing the Raffle(NCPC 2016 暴力求解)

    题目: A tremendously exciting raffle is being held, with some tremendously exciting prizes being given ...

  2. NCPC 2016 Fleecing the Raffle

    Description A tremendously exciting raffle is being held, with some tremendously exciting prizes bei ...

  3. Urozero Autumn 2016. NCPC 2016

    A. Artwork 倒过来并查集维护即可. #include<cstdio> #include<algorithm> using namespace std; const i ...

  4. Nordic Collegiate Programming Contest (NCPC) 2016

    A Artwork B Bless You Autocorrect! C Card Hand Sorting D Daydreaming Stockbroker 贪心,低买高卖,不要爆int. #in ...

  5. 2019年台积电进军AR芯片,将用于下一代iPhone

    近日,有报道表示台积电10nm 芯片可怜的收益率可能会对 2017 年多款高端移动设备的推出产生较大的影响,其中自然包括下一代 iPhone 和 iPad 机型.不过,台积电正式驳斥了这一说法,表明1 ...

  6. csu 1812: 三角形和矩形 凸包

    传送门:csu 1812: 三角形和矩形 思路:首先,求出三角形的在矩形区域的顶点,矩形在三角形区域的顶点.然后求出所有的交点.这些点构成一个凸包,求凸包面积就OK了. /************** ...

  7. CSU 1503 点到圆弧的距离(2014湖南省程序设计竞赛A题)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1503 解题报告:分两种情况就可以了,第一种是那个点跟圆心的连线在那段扇形的圆弧范围内,这 ...

  8. CSU 1120 病毒(DP)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1120 解题报告:dp,用一个串去更新另一个串,递推方程是: if(b[i] > a ...

  9. CSU 1116 Kingdoms(枚举最小生成树)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116 解题报告:一个国家有n个城市,有m条路可以修,修每条路要一定的金币,现在这个国家只 ...

随机推荐

  1. YII2 定义页面提示

    控制器里面这样写: 单条消息: 键值是规定好的,不要去自定义哦! \Yii::$app->getSession()->setFlash('error', 'This is the mess ...

  2. 【洛谷2257】YY的GCD(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\). 莫比乌斯反演 听说此题是莫比乌斯反演入门题? 一些定义 首先,我们可以定义\(f ...

  3. iptables 防火墙详解

    一:前言   防火墙,其实说白了讲,就是用于实现Linux下访问控制的功能的,它分为硬件的或者软件的防火墙两种.无论是在哪个网络中,防火墙工作的地方一定是在网络的边缘.而我们的任务就是需要去定义到底防 ...

  4. 【转】android调试工具DDMS的使用详解

    具体可见http://developer.android.com/tools/debugging/ddms.html. DDMS为IDE和emultor.真正的android设备架起来了一座桥梁.开发 ...

  5. PMBOK(第六版) PMP笔记——第十章(项目沟通管理)

    PM 大多数时间都用在与干系人的沟通上.第十章有三个过程: 规划沟通管理:根据干系人的需求,制定沟通管理计划管理沟通:根据沟通管理计划发布.收集.处理信息监督沟通:确保在正确时间将正确信息传递给正确的 ...

  6. bootstrap2文档的学习

    就像刚开始的 优雅,直观,强大的前端框架,让web开发更快,更容易,bootstrap给我的感觉就是把常用的布局,组件(导航,列表,按钮,表格),还有规范化颜色等等,同时它的遍历不至于此,他还支持了自 ...

  7. windows下安装python的包管理工具pip,scikit-learn

    打开https://pip.pypa.io/en/latest/installing.html#python-os-support 下载pip-get.py 进入python,执行pip-get.py ...

  8. 通过Jquery获取RadioButtonList选中值

    推荐 使用第二种,第一种有时候不起作用 第一种:通过find方法 获取RadioButtonList所选中的值 <script type="text/javascript"& ...

  9. macOS如何正确驱动集成显卡HDMI(包括视频和音频)

    聊聊如何正确驱动集成显卡HDMI(包括视频和音频)必备条件:1.必须使用AppleHDA驱动声卡(仿冒.clover.applealc都可以的),使用voodoo驱动声卡应该不行的.2.dsdt或者s ...

  10. 【计数】cf938E. Max History

    发现有一种奇怪的方法不能快速预处理? 复习一下常见的凑组合数的套路 You are given an array a of length n. We define fa the following w ...