Hierarchical data in postgres
https://coderwall.com/p/whf3-a/hierarchical-data-in-postgres
-------------------------------------------------------------------------------
This tip will try to answer the following questions:
- How can we represent a tree of data in postgres
- How can we efficiently query for any entire single node and all of it's children (and children's children).
The test data
Since we want to keep this simple we will assume our data is just a bunch of sections. A section just has a nameand each section has a single parent section.
Section A
|--- Section A.1
Section B
|--- Section B.1
|--- Section B.1
|--- Section B.1.1
We'll use this simple data for examples below.
Simple self-referencing
When designing a self-referential table (something that joins itself to itself) the most obvious choice is to have some kind of parent_id column on our table that references itself.
CREATE TABLE section (
id INTEGER PRIMARY KEY,
name TEXT,
parent_id INTEGER REFERENCES section,
);
ALTER TABLE page ADD COLUMN parent_id INTEGER REFERENCES page;
CREATE INDEX section_parent_id_idx ON section (parent_id);
Now insert our example data, using the parent_id to related the nodes together:
INSERT INTO section (id, name, parent_id) VALUES (1, 'Section A', NULL);
INSERT INTO section (id, name, parent_id) VALUES (2, 'Section A.1', 1);
INSERT INTO section (id, name, parent_id) VALUES (3, 'Section B', NULL);
INSERT INTO section (id, name, parent_id) VALUES (4, 'Section B.1', 3);
INSERT INTO section (id, name, parent_id) VALUES (5, 'Section B.2', 3);
INSERT INTO section (id, name, parent_id) VALUES (6, 'Section B.2.1', 5);
This works great for simple queries such as, fetch the direct children of Section B:
SELECT * FROM section WHERE parent = 3
but it will require complex or recursive queries for questions like fetch me all the children and children's children of Section B:
WITH RECURSIVE nodes(id,name,parent_id) AS (
SELECT s1.id, s1.name, s1.parent_id
FROM section s1 WHERE parent_id = 3
UNION
SELECT s2.id, s2.name, s2.parent_id
FROM section s2, nodes s1 WHERE s2.parent_id = s1.id
)
SELECT * FROM nodes;
So we have answered the "how to build a tree" part of the question, but are not happy with the "how to query for a node and all it's children" part.
Enter ltree. (Short for "label tree" - I think?).
The ltree extension
The ltree extension is a great choice for querying hierarchical data. This is especially true for self-referential relationships.
Lets rebuild the above example using ltree. We'll use the page's primary keys as the "labels" within our ltree paths and a special "root" label to denote the top of the tree.
CREATE EXTENSION ltree;
CREATE TABLE section (
id INTEGER PRIMARY KEY,
name TEXT,
parent_path LTREE
);
CREATE INDEX section_parent_path_idx ON section USING GIST (parent_path);
We'll add in our data again, this time rather than using the id for the parent, we will construct an ltree path that represents the parent node.
INSERT INTO section (id, name, parent_path) VALUES (1, 'Section 1', 'root');
INSERT INTO section (id, name, parent_path) VALUES (2, 'Section 1.1', 'root.1');
INSERT INTO section (id, name, parent_path) VALUES (3, 'Section 2', 'root');
INSERT INTO section (id, name, parent_path) VALUES (4, 'Section 2.1', 'root.3');
INSERT INTO section (id, name, parent_path) VALUES (4, 'Section 2.2', 'root.3');
INSERT INTO section (id, name, parent_path) VALUES (5, 'Section 2.2.1', 'root.3.4');
Cool. So now we can make use of ltree's operators @> and <@ to answer our original question like:
SELECT * FROM section WHERE parent_path <@ 'root.3';
However we have introduced a few issues.
- Our simple
parent_idversion ensured referential consistancy by making use of theREFERENCESconstraint. We lost that by switching to ltree paths. - Ensuring that the ltree paths are valid can be a bit of a pain, and if paths become stale for some reason your queries may return unexpected results or you may "orphan" nodes.
The final solution
To fix these issues we want a hybrid of our original parent_id (for the referential consistency and simplicity of the child/parent relationship) and our ltree paths (for improved querying power/indexing). To achieve this we will hide the management of the ltree path behind a trigger and only ever update the parent_id column.
CREATE EXTENSION ltree;
CREATE TABLE section (
id INTEGER PRIMARY KEY,
name TEXT,
parent_id INTEGER REFERENCES section,
parent_path LTREE
);
CREATE INDEX section_parent_path_idx ON section USING GIST (parent_path);
CREATE INDEX section_parent_id_idx ON section (parent_id);
CREATE OR REPLACE FUNCTION update_section_parent_path() RETURNS TRIGGER AS $$
DECLARE
path ltree;
BEGIN
IF NEW.parent_id IS NULL THEN
NEW.parent_path = 'root'::ltree;
ELSEIF TG_OP = 'INSERT' OR OLD.parent_id IS NULL OR OLD.parent_id != NEW.parent_id THEN
SELECT parent_path || id::text FROM section WHERE id = NEW.parent_id INTO path;
IF path IS NULL THEN
RAISE EXCEPTION 'Invalid parent_id %', NEW.parent_id;
END IF;
NEW.parent_path = path;
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
CREATE TRIGGER parent_path_tgr
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW EXECUTE PROCEDURE update_section_parent_path();
Much better.
More
Written by Chris Farmiloe
Hierarchical data in postgres的更多相关文章
- asp.net Hierarchical Data
Introduction A Hierarchical Data is a data that is organized in a tree-like structure and structure ...
- mysql 树形数据,层级数据Managing Hierarchical Data in MySQL
原文:http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/ 引言 大多数用户都曾在数据库中处理过分层数据(hiera ...
- Managing Hierarchical Data in MySQL
Managing Hierarchical Data in MySQL Introduction Most users at one time or another have dealt with h ...
- Managing Hierarchical Data in MySQL(邻接表模型)[转载]
原文在:http://dev.mysql.com/tech-resources/articles/hierarchical-data.html 来源: http://www.cnblogs.com/p ...
- 云原生 PostgreSQL 集群 - PGO:来自 Crunchy Data 的 Postgres Operator
使用 PGO 在 Kubernetes 上运行 Cloud Native PostgreSQL:来自 Crunchy Data 的 Postgres Operator! Cloud Native Po ...
- [Postgres] Group and Aggregate Data in Postgres
How can we see a histogram of movies on IMDB with a particular rating? Or how much movies grossed at ...
- 《利用Python进行数据分析: Python for Data Analysis 》学习随笔
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...
- Following a Select Statement Through Postgres Internals
This is the third of a series of posts based on a presentation I did at the Barcelona Ruby Conferenc ...
- ZOJ 3826 Hierarchical Notation 模拟
模拟: 语法的分析 hash一切Key建设规划,对于记录在几个地点的每个节点原始的字符串开始输出. . .. 对每一个询问沿图走就能够了. .. . Hierarchical Notation Tim ...
随机推荐
- Oracle 了解 DDL 操作与 REDO 的关系
目录 了解 DDL 操作与 REDO 的关系 DDL是否会产生REDO 通过 10046 trace 来分析create 和drop 如果drop失败,redo的变化 了解 DDL 操作与 REDO ...
- 一个通用的Makefile框架
先做一个简单的记录,后续有时间再慢慢完善补充细节. 先上一个整体图片: 其中,最重要的文件就是:program_template.mk. 下面是program_template.mk最重要的内容: $ ...
- C++ 指针的小知识
看个小例子: char* fun1(){ char * p = (char*)malloc(100); p = "helloww"; return p;} void fun2(ch ...
- 利用bochs调试Linux 0.11内核
引导程序调试软件bochs,跟配套的linux0.11内核img下载地址分别是: http://sourceforge.net/projects/bochs/http://www.oldlinux.o ...
- AtCoder Regular Contest 080
手贱去开了abc,这么无聊.直接arc啊 C - 4-adjacent Time limit : 2sec / Memory limit : 256MB Score : 400 points Prob ...
- pytorch conditional GAN 调试笔记
推荐的几个开源实现 znxlwm 使用InfoGAN的结构,卷积反卷积 eriklindernoren 把mnist转成1维,label用了embedding wiseodd 直接从tensorflo ...
- 【Luogu】P3979遥远的国度(树链剖分)
题目链接 不会换根从暑假开始就困扰我了……拖到现在…… 会了还是很激动的. 换根操作事实上不需要(也不能)改树剖本来的dfs序……只是在query上动动手脚…… 设全树的集合为G,以root为根,u在 ...
- HUST——1103Party(拓扑排序+个人见解)
1103: Party Time Limit: 2 Sec Memory Limit: 64 MB Submit: 11 Solved: 7 Description N students were ...
- 刷题总结——game(hdu4616)
题目: Nowadays, there are more and more challenge game on TV such as 'Girls, Rush Ahead'. Now, you par ...
- 给某个li标签家样式
HTML: <div class="tabs clearfix"> <ul id="der"> <li ><a hre ...