一、cifar10数据集

(http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz)源格式是数据文件,因为训练需要转换成图片格式

转换代码:

注意文件路径改成自己的文件路径,train文件夹需要自己建,等待转换完成

from scipy.misc import imsave
import numpy as np # 解压 返回解压后的字典
def unpickle(file):
import pickle as pk
fo = open(file, 'rb')
dict = pk.load(fo,encoding='iso-8859-1')
fo.close()
return dict # 生成训练集图片
for j in range(1, 6):
dataName = "cifar-10-python/cifar-10-batches-py/data_batch_" + str(j) # 读取当前目录下的data_batch1~5文件。
Xtr = unpickle(dataName)
print (dataName + " is loading...") for i in range(0, 10000):
img = np.reshape(Xtr['data'][i], (3, 32, 32)) # Xtr['data']为图片二进制数据
img = img.transpose(1, 2, 0) # 读取image
picName = 'train/' + str(Xtr['labels'][i]) + '_' + str(i + (j - 1)*10000) + '.jpg'
# Xtr['labels']为图片的标签,值范围0-9,本文中,train文件夹需要存在,并与脚本文件在同一目录下。
imsave(picName, img)
print (dataName + " loaded.") print ("test_batch is loading...") # 生成测试集图片
testXtr = unpickle("test_batch")
for i in range(0, 10000):
img = np.reshape(testXtr['data'][i], (3, 32, 32))
img = img.transpose(1, 2, 0)
picName = 'test/' + str(testXtr['labels'][i]) + '_' + str(i) + '.jpg'
imsave(picName, img)
print ("test_batch loaded.")

二、mnist数据集的转化

1、先解压出二进制文件,再运行

import numpy as np
import struct from PIL import Image
import os data_file = 'MNIST_data/train-images.idx3-ubyte' #需要修改的路径
# It's 47040016B, but we should set to 47040000B
data_file_size = 47040016
data_file_size = str(data_file_size - 16) + 'B' data_buf = open(data_file, 'rb').read() magic, numImages, numRows, numColumns = struct.unpack_from(
'>IIII', data_buf, 0)
datas = struct.unpack_from(
'>' + data_file_size, data_buf, struct.calcsize('>IIII'))
datas = np.array(datas).astype(np.uint8).reshape(
numImages, 1, numRows, numColumns) label_file = 'MNIST_data/train-labels.idx1-ubyte' #需要修改的路径 # It's 60008B, but we should set to 60000B
label_file_size = 60008
label_file_size = str(label_file_size - 8) + 'B' label_buf = open(label_file, 'rb').read() magic, numLabels = struct.unpack_from('>II', label_buf, 0)
labels = struct.unpack_from(
'>' + label_file_size, label_buf, struct.calcsize('>II'))
labels = np.array(labels).astype(np.int64) datas_root = 'MNIST_data/mnist_train' #需要修改的路径
if not os.path.exists(datas_root):
os.mkdir(datas_root) for i in range(10):
file_name = datas_root + os.sep + str(i)
if not os.path.exists(file_name):
os.mkdir(file_name) for ii in range(numLabels):
img = Image.fromarray(datas[ii, 0, 0:28, 0:28])
label = labels[ii]
file_name = datas_root + os.sep + str(label) + os.sep + 'mnist_train_' + str(ii) + '.png'
img.save(file_name)
import numpy as np
import struct from PIL import Image
import os data_file = 'MNIST_data/t10k-images.idx3-ubyte' #需要修改的路径 # It's 7840016B, but we should set to 7840000B
data_file_size = 7840016
data_file_size = str(data_file_size - 16) + 'B' data_buf = open(data_file, 'rb').read() magic, numImages, numRows, numColumns = struct.unpack_from(
'>IIII', data_buf, 0)
datas = struct.unpack_from(
'>' + data_file_size, data_buf, struct.calcsize('>IIII'))
datas = np.array(datas).astype(np.uint8).reshape(
numImages, 1, numRows, numColumns) label_file = 'MNIST_data/t10k-labels.idx1-ubyte'#需要修改的路径 # It's 10008B, but we should set to 10000B
label_file_size = 10008
label_file_size = str(label_file_size - 8) + 'B' label_buf = open(label_file, 'rb').read() magic, numLabels = struct.unpack_from('>II', label_buf, 0)
labels = struct.unpack_from(
'>' + label_file_size, label_buf, struct.calcsize('>II'))
labels = np.array(labels).astype(np.int64) datas_root = 'MNIST_data/mnist_test' #需要修改的路径 if not os.path.exists(datas_root):
os.mkdir(datas_root) for i in range(10):
file_name = datas_root + os.sep + str(i)
if not os.path.exists(file_name):
os.mkdir(file_name) for ii in range(numLabels):
img = Image.fromarray(datas[ii, 0, 0:28, 0:28])
label = labels[ii]
file_name = datas_root + os.sep + str(label) + os.sep + 'mnist_test_' + str(ii) + '.png'
img.save(file_name)

2、接着构造出图片集noisy_test和noisy_train

这两个图片集是加了椒盐噪声的集合(可用作图像去噪)

import numpy as np
import struct
import numpy as np
from PIL import Image
import os data_file = 'MNIST_data/train-images.idx3-ubyte' #需要修改的路径
# It's 47040016B, but we should set to 47040000B
data_file_size = 47040016
data_file_size = str(data_file_size - 16) + 'B' data_buf = open(data_file, 'rb').read() magic, numImages, numRows, numColumns = struct.unpack_from(
'>IIII', data_buf, 0)
datas = struct.unpack_from(
'>' + data_file_size, data_buf, struct.calcsize('>IIII'))
datas = np.array(datas).astype(np.uint8).reshape(
numImages, 1, numRows, numColumns) label_file = 'MNIST_data/train-labels.idx1-ubyte' #需要修改的路径 # It's 60008B, but we should set to 60000B
label_file_size = 60008
label_file_size = str(label_file_size - 8) + 'B' label_buf = open(label_file, 'rb').read() magic, numLabels = struct.unpack_from('>II', label_buf, 0)
labels = struct.unpack_from(
'>' + label_file_size, label_buf, struct.calcsize('>II'))
labels = np.array(labels).astype(np.int64) datas_root = 'MNIST_data/noisy_train' #需要修改的路径
if not os.path.exists(datas_root):
os.mkdir(datas_root) for i in range(10):
file_name = datas_root + os.sep + str(i)
if not os.path.exists(file_name):
os.mkdir(file_name) for ii in range(numLabels):
img = Image.fromarray(datas[ii, 0, 0:28, 0:28])
label = labels[ii]
file_name = datas_root + os.sep + str(label) + os.sep + 'mnist_train_' + str(ii) + '.png'
x_train_noisy = np.array(img)
noise_factor = 0.5
x_train_noisy = x_train_noisy.astype('float32') / 255.
x_train_noisy = x_train_noisy + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train_noisy.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_train_noisy = x_train_noisy.astype(np.float)
x_train_noisy = x_train_noisy.astype('float32') * 255
x_train_noisy = x_train_noisy.astype(np.uint8)
#print(x_train_noisy)
#os._exit(0)
img=Image.fromarray(x_train_noisy)
img.save(file_name)
import numpy as np
import struct from PIL import Image
import os data_file = 'MNIST_data/t10k-images.idx3-ubyte' #需要修改的路径 # It's 7840016B, but we should set to 7840000B
data_file_size = 7840016
data_file_size = str(data_file_size - 16) + 'B' data_buf = open(data_file, 'rb').read() magic, numImages, numRows, numColumns = struct.unpack_from(
'>IIII', data_buf, 0)
datas = struct.unpack_from(
'>' + data_file_size, data_buf, struct.calcsize('>IIII'))
datas = np.array(datas).astype(np.uint8).reshape(
numImages, 1, numRows, numColumns) label_file = 'MNIST_data/t10k-labels.idx1-ubyte'#需要修改的路径 # It's 10008B, but we should set to 10000B
label_file_size = 10008
label_file_size = str(label_file_size - 8) + 'B' label_buf = open(label_file, 'rb').read() magic, numLabels = struct.unpack_from('>II', label_buf, 0)
labels = struct.unpack_from(
'>' + label_file_size, label_buf, struct.calcsize('>II'))
labels = np.array(labels).astype(np.int64) datas_root = 'MNIST_data/noisy_test' #需要修改的路径 if not os.path.exists(datas_root):
os.mkdir(datas_root) for i in range(10):
file_name = datas_root + os.sep + str(i)
if not os.path.exists(file_name):
os.mkdir(file_name) for ii in range(numLabels):
img = Image.fromarray(datas[ii, 0, 0:28, 0:28])
label = labels[ii]
file_name = datas_root + os.sep + str(label) + os.sep + 'mnist_test_' + str(ii) + '.png'
x_train_noisy = np.array(img)
noise_factor = 0.5
x_train_noisy = x_train_noisy.astype('float32') / 255.
x_train_noisy = x_train_noisy + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train_noisy.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_train_noisy = x_train_noisy.astype(np.float)
x_train_noisy = x_train_noisy.astype('float32') * 255
x_train_noisy = x_train_noisy.astype(np.uint8)
#print(x_train_noisy)
#os._exit(0)
img=Image.fromarray(x_train_noisy)
img.save(file_name)

TensorFlow笔记五:将cifar10数据文件复原成图片格式的更多相关文章

  1. 【转】java将excel文件转换成txt格式文件

    在实际应用中,我们难免会遇到解析excel文件入库事情,有时候为了方便,需要将excel文件转成txt格式文件.下面代码里面提供对xls.xlsx两种格式的excel文件解析,并写入到一个新的txt文 ...

  2. 关于springmvc下服务器文件打包成zip格式下载功能

    关于springmvc下服务器文件打包成zip格式下载功能 2016年09月21日 11:22:14 toxic_guantou 阅读数:5731更多 个人分类: 技术点存储   版权声明:本文为博主 ...

  3. base64格式的图片数据如何转成图片

    base64格式的图片数据如何转成图片 一.总结 一句话总结:不仅要去掉前面的格式串,还需要base64_decode()解码才行. // $base_img是获取到前端传递的值 $base_img ...

  4. Python:将utf-8格式的文件转换成gbk格式的文件

    需求:将utf-8格式的文件转换成gbk格式的文件 实现代码如下: def ReadFile(filePath,encoding="utf-8"): with codecs.ope ...

  5. dvi文件和将dvi文件转换成pdf格式

    dvi文件和将dvi文件转换成pdf格式 Latex只能把tex文件编译成dvi文件, 在cmd 中: 使用xdvi查看dvi格式的文件 若用texstudio编辑tex文件,则可直接将已编译成功的. ...

  6. 将文本(lrc,txt)文件转换成UTF-8格式

    UTF-8是UNICODE的一种变长字符编码又称万国码,由Ken Thompson于1992年创建.现在已经标准化为RFC 3629.UTF-8用1到6个字节编码UNICODE字符.用在网页上可以同一 ...

  7. 使用visual studio把xsd文件转成xml格式文件

    使用visual studio把xsd文件转成xml格式文件 最近一段时间都在做Amazon的mws api的对接工作,mws api的描述文件都是使用的xsd文件来进行的,之前确实也没有接触过,也花 ...

  8. oracle 10g 用dbms_xmlgen将数据表转成xml格式

    oracle 10g 用dbms_xmlgen将数据表转成xml格式 oracle 10g 用dbms_xmlgen将数据表转成xml格式 oracle用plsql将sql查询的所有数据导出为xml

  9. java实现将文件压缩成zip格式

    以下是将文件压缩成zip格式的工具类(复制后可以直接使用): zip4j.jar包下载地址:http://www.lingala.net/zip4j/download.php package util ...

随机推荐

  1. Kafka 配置参数

    Broker  Configs Property Default Description broker.id   每个broker都可以用一个唯一的非负整数id进行标识:这个id可以作为broker的 ...

  2. icpc南昌邀请赛 比赛总结

    上周末,我参加了icpc南昌区域赛邀请赛,这也是我的第一次外出参赛. 星期五晚上,在6个小时的火车和1个小时的公交后,我们终于抵达了江西师范大学,这次的比赛场地.江西师范大学周围的设施很齐全,各种烧烤 ...

  3. git 远程仓库回滚

    git branch backup #创建备份分支 git push origin backup:backup #push到远程 git reset --hard commit_id #本地分支回滚 ...

  4. java _tomcat_mysql 部署

    项目做完了,要发布了,而Java的特长之一就是移植性好,面对着微软的XP的停止服务,Windows系统的“独裁”,越来越多的商家选择了开源的免费的linux系统作为服务器.因为linux系统也有图形界 ...

  5. 转:mysql 索引

    转:mysql 索引 文章归属:http://feiyan.info/16.html,我想自己去写了,但是发现此君总结的非常详细.直接搬过来了 关于MySQL索引的好处,如果正确合理设计并且使用索引的 ...

  6. 1180: [CROATIAN2009]OTOCI

    1180: [CROATIAN2009]OTOCI Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 1032  Solved: 638[Submit][ ...

  7. about coroutine

    co 有协作的意思,是让多个 routine 合作来完成某件或者某几件事情,它主要解决的问题就是合理安排一些耗时长的工作的执行时间,让其他的工作有机会得到执行.

  8. 洛谷 P1174 打砖块

    题目描述 小红很喜欢玩一个叫打砖块的游戏,这个游戏的规则如下: 在刚开始的时候,有n行*m列的砖块,小红有k发子弹.小红每次可以用一发子弹,打碎某一列当前处于这一列最下面的那块砖,并且得到相应的得分. ...

  9. LOJ#2244. 「NOI2014」起床困难综合症

    $n \leq 1e5$个位运算操作,$m \le 2^{30}$,问$0-m$中谁进行完所有操作值最大,输出这个最大值. cfA题难度?当送分题就不管了 and相当于几个位取0,or相当于几个位取1 ...

  10. Firebug Console API

    原文发布时间为:2011-06-06 -- 来源于本人的百度文章 [由搬家工具导入] Console API 当打开 firebug (也包括 Chrome 等浏览器的自带调试工具),window 下 ...