还是挺难的吧......勉强看懂调了半天

首先表达式可以写成 8(10^x -1)/9,题意为求一个最小的x使L | 8(10^x -1)/9

设d=gcd(L,8)

L | 8(10^x -1)/9

<=>9L | 8(10^x -1)

<=>9L/d | 10^x -1 (因为 9L/d 和 8/d 互质了 所以 9L/d 能整除(8/d)*(10^x-1)和 8/d 无关,所以可以去掉)

<=>10^x 同余 1(mod 9L/d)

引理:

若a,n互质,则满足10^x同余1(mod n)的最小正整数x0是phi(n)的约数

反证法:

假设满足a^x 同余 1(mod n)的最小正整数x0不能整除phi(n)

设phi(n)=q*x0+r(0<r<x0),因为a^x0 同余1(mod n),所以a^(q*x0)同余1(mod n)

根据欧拉定理a^phi(n)同余1(mod n),所以a^r同余1(mod n),与x0最小矛盾

无解的时候就是q与10不互质的时候,因为若q与10有公因子d:
1.若d=2,q=2*k,那么10^x=2^x*5^x=1%2k
   即2^x*5^x=1+2k*m,左边为偶数,右边为奇数,显然矛盾。
2.若d=5,q=5*k,那么10^x=2^x*5^x=1%5k
   即2^x*5^x=1+5k*m,左边是5的倍数,右边不是5的倍数,显然矛盾。

注意:乘的时候会爆longlong,手写乘法,要用根号的试除法求约数,不然会T

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
ll n,cnt;
ll x[];
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;
}
ll eular(ll n){
ll ans=n;
for(ll i=;i*i<=n;i++){
if(n%i==){
ans=ans/i*(i-);
while(n%i==)n/=i;
}
}
if(n>)ans=ans/n*(n-);
return ans;
}
ll mul(ll a,ll b,ll mod){
ll ans=;
while(b){
if(b&)ans=(ans+a)%mod;
a=(a<<)%mod;
b>>=;
}
return ans;
}
ll qpow(ll a,ll b,ll mod){
ll base=a,ans=;
while(b){
if(b&)ans=mul(ans,base,mod);
base=mul(base,base,mod);
b>>=;
}
return ans%mod;
} int main(){
int t=;
while(){
int fl=;cnt=;
scanf("%lld",&n);
if(n==)break;
ll d=*n/gcd(n,);
if(gcd(,d)!=){
printf("Case %d: 0\n",++t);
}
else{
ll phi=eular(d);
for(ll i=;i*i<=phi;i++){
if(phi%i==){
x[++cnt]=i;
if(i*i!=phi)x[++cnt]=phi/i;
}
} sort(x+,x+cnt+);
for(int i=;i<=cnt;i++)
if(qpow(,x[i],d)==){
printf("Case %d: %lld\n",++t,x[i]);
break;
}
}
}
}

[题解](同余)POJ_3696_The Luckiest Number的更多相关文章

  1. poj_3696_The Luckiest number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  2. poj 3696 The Luckiest Number

    The Luckiest Number 题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除. 注释:如果无解输出0.poj多组数据,第i组数据前面加上Case ...

  3. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  4. POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】

    一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...

  5. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  6. HDU 2462 The Luckiest number

    The Luckiest number Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Ori ...

  7. The Luckiest number(hdu2462)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. LeetCode Continuous Subarray Sum 题解 同余前缀和 Hash表

    文章目录 题意 思路 特殊情况k=0 Source Code 1 Source Code 2 题意 给定一个数组和一个整数k,返回是否存在一个长度至少为2的连续子数组的和为k的倍数. 思路 和上一篇博 ...

  9. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

随机推荐

  1. 51Nod XOR key —— 区间最大异或值 可持久化字典树

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1295 1295 XOR key  题目来源: HackerRa ...

  2. python to 可执行文件

    cx_Freeze for Windows, Linux, and Mac OS X (Python 2.7, 3.x) pyinstaller for Windows, Linux, and Mac ...

  3. rand()与srand()

    1.不用srand()的话 两次运行程序产生的随机数序列相同 2.用srand() 两次运行程序产生的随机数则不同 示例程序: #include<iostream> #include< ...

  4. malloc和new的区别是什么?

    http://zhidao.baidu.com/link?url=iUDUZeJtj1o12PvUETLlJgvAMqzky5HxGCJRGnULpsO8HdWAdjKkQqGCJ9-o-aTu8NP ...

  5. Linux中vsftpd安装和配置

    目录 Redhat/CentOS安装vsftp软件 Ubuntu/Debian安装vsftp软件 Redhat/CentOS安装vsftp软件 1. 安装vsftp $ yum install vsf ...

  6. RMAN兼容性、控制文件自动备份、保存时间、备份策略、备份脚本(二)

    RMAN 程序的兼容性 RMAN 环境由以下5部分组成:(1) RMAN executable(2) Recovery catalog database(3) Recovery catalog sch ...

  7. BZOJ3127:[USACO2013OPEN]Yin and Yang

    浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem. ...

  8. Oracle字段增删改方法总结

    一.修改字段的语法:alter table tablename modify (字段名 类型 [default value][null/not null],….);有一个表名为tb,字段段名为name ...

  9. request.getSession()方法的应用

    request.getSession(true):若存在会话则返回该会话,否则新建一个会话. request.getSession(false):若存在会话则返回该会话,否则返回NULL

  10. Session与Cookie(1)

    Session session是一种位于服务端,用于存储一个会话(指打开浏览器访问某个域名,及其下面的资源,然后关掉浏览器的过程)中所需的配置信息.也就是在一个会话中,只存在一个session.对于J ...