二分查找算法java
二分查找又称折半查找,它是一种效率较高的查找方法。
折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分。通过一次比较,将查找区间缩小一半。 折半查找是一种高效的查找方法。它可以明显减少比较次数,提高查找效率。但是,折半查找的先决条件是查找表中的数据元素必须有序。
折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
算法步骤描述
① 首先确定整个查找区间的中间位置 mid = ( left + right )/ 2
② 用待查关键字值与中间位置的关键字值进行比较;
若相等,则查找成功
若大于,则在后(右)半个区域继续进行折半查找
若小于,则在前(左)半个区域继续进行折半查找
③ 对确定的缩小区域再按折半公式,重复上述步骤。
最后,得到结果:要么查找成功, 要么查找失败。折半查找的存储结构采用一维数组存放。
package src.com.sunchis.basic;
public class BinarySearch {
/**
* 二分查找算法
* @param srcArray 有序数组
* @param key 查找元素
* @return key的数组下标,没找到返回-1
*/
public static void main(String[] args) {
int srcArray[] = {3,5,11,17,21,23,28,30,32,50,64,78,81,95,101};
System.out.println(binSearch(srcArray, 0, srcArray.length - 1, 81));
} // 二分查找递归实现
public static int binSearch(int srcArray[], int start, int end, int key) {
int mid = (end - start) / 2 + start;
if (srcArray[mid] == key) {
return mid;
}
if (start >= end) {
return -1;
} else if (key > srcArray[mid]) {
return binSearch(srcArray, mid + 1, end, key);
} else if (key < srcArray[mid]) {
return binSearch(srcArray, start, mid - 1, key);
}
return -1;
} // 二分查找普通循环实现 public static int binSearch(int srcArray[], int key) {
int mid = srcArray.length / 2;
if (key == srcArray[mid]) {
return mid;
}
int start = 0;
int end = srcArray.length - 1;
while (start <= end) {
mid = (end - start) / 2 + start;
if (key < srcArray[mid]) {
end = mid - 1;
} else if (key > srcArray[mid]) {
start = mid + 1;
} else {
return mid;
}
}
return -1;
} }
二分查找算法java的更多相关文章
- 二分查找算法java实现
今天看了一下JDK里面的二分法是实现,觉得有点小问题.二分法的实现有多种今天就给大家分享两种.一种是递归方式的,一种是非递归方式的.先来看看一些基础的东西. 1.算法概念. 二分查找算法也称为折半搜索 ...
- Java实现的二分查找算法
二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小 于该中点 ...
- Java学习之二分查找算法
好久没写算法了.只记得递归方法..结果测试下爆栈了. 思路就是取范围的中间点,判断是不是要找的值,是就输出,不是就与范围的两个临界值比较大小,不断更新临界值直到找到为止,给定的集合一定是有序的. 自己 ...
- 算法:时间复杂度+二分查找法(Java/Go/Python)实现
导读 曾几何时学好数据结构与算法是我们从事计算机相关工作的基本前提,然而现在很多程序员从事的工作都是在用高级程序设计语言(如Java)开发业务代码,久而久之,对于数据结构和算法就变得有些陌生了,由于长 ...
- 二分查找算法,java实现
二分查找算法是在有序数组中用到的较为频繁的一种算法. 在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间复杂度为O(n),但二分查找算法则更优,因为其查找时间复杂度 ...
- 二分查找算法(JAVA)
1.二分查找又称折半查找,它是一种效率较高的查找方法. 2.二分查找要求:(1)必须采用顺序存储结构 (2).必须按关键字大小有序排列 3.原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位 ...
- Java之二分查找算法
算法说明:取中间位置的值与待查字比较.如果比待查字更大,则去列表的前半部分查找,如果比待查字小,则去列表的后半部分查找,直到找到这个待查字,或者返回没有找到这个待查字.其中给定的列表是从大到小排列的有 ...
- Java面向对象_常用类库api——二分查找算法
概念:又称为折半查找,优点是比较次数少,查找速度快,平均性能好:缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表. 例: public class Bi ...
- 【algorithm】 二分查找算法
二分查找算法:<维基百科> 在计算机科学中,二分搜索(英语:binary search),也称折半搜索(英语:half-interval search)[1].对数搜索(英语:logari ...
随机推荐
- 玲珑学院1072 【DFS】
蛤蛤,略蠢. priority_queue 自定义优先级 和排序是反的 struct node { int x,y; friend bool operator< (node a,node b) ...
- css-float浮动详细
前言 pc端的页面为了保持良好的兼容性,一般会使用css2部分就支持的浮动(float)和定位(postion)来布局.浮动行为怪异,但有迹可循.以下下是在css揭秘一书中总结的浮动内幕. 包含块:浮 ...
- 解决web项目无法部署到eclipse配置的本地tomcat
一.发现问题 在eclipse中新建Dynamic Web Project,配置好本地的tomcat并写好代码后选择Run on Server,但运行后发现在tomcat的安装目录下的webapps并 ...
- mongodb vs redis(Tokyo Tyrant转)
* MongoDB vs Redis vs Tokyo Tyrant(原文链接:http://www.cnblogs.com/riceball/archive/2010/03/05/MongoDB_V ...
- collections 中 typing 中对象的引用
from typing import ( Callable as Callable, Container as Container, Hashable as Hashable, Iterable as ...
- Codeforces Round #390 (Div. 2) B
Ilya is an experienced player in tic-tac-toe on the 4 × 4 field. He always starts and plays with Xs. ...
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) C
Misha and Vanya have played several table tennis sets. Each set consists of several serves, each ser ...
- 去除List<Object>集合中重复的元素(利用HashSet的特性---无重复元素)
import java.util.ArrayList;import java.util.HashSet;import java.util.Iterator; public class Hashset ...
- 深入理解synchronized
上一篇博客虽然题目叫内置锁的基本使用,但其实也是讲synchronized关键字的使用的.这篇博客是在看了许多大佬的博客记录后总结出的synchronized更底层的知识和原理. 一.synchron ...
- 第八章 设计用户界面 之 给Web程序应用用户界面设计
1. 概述 本章内容包括: 使用CSS创建和应用样式.使用HTML构架用户界面的层次 以及 根据需求实现动态页面内容. 2. 主要内容 2.1 使用CSS创建和应用样式 Razor程序的模板是_Lay ...