题目描述

Farmer John always wants his cows to have enough water and thus has made a map of the N (1 <= N <= 700) water pipes on the farm that connect the well to the barn. He was surprised to find a wild mess of different size pipes connected in an apparently haphazard way. He wants to calculate the flow through the pipes.

Two pipes connected in a row allow water flow that is the minimum of the values of the two pipe's flow values. The example of a pipe with flow capacity 5 connecting to a pipe of flow capacity 3 can be reduced logically to a single pipe of flow capacity 3:

+---5---+---3---+ -> +---3---+

Similarly, pipes in parallel let through water that is the sum of their flow capacities:

+---5---+

---+ +--- -> +---8---+

+---3---+

Finally, a pipe that connects to nothing else can be removed; it contributes no flow to the final overall capacity:

+---5---+

---+ -> +---3---+

+---3---+--

All the pipes in the many mazes of plumbing can be reduced using these ideas into a single total flow capacity.

Given a map of the pipes, determine the flow capacity between the well (A) and the barn (Z).

Consider this example where node names are labeled with letters:

+-----------6-----------+

A+---3---+B +Z

+---3---+---5---+---4---+

C D

Pipe BC and CD can be combined:

+-----------6-----------+

A+---3---+B +Z

+-----3-----+-----4-----+

D Then BD and DZ can be combined:

+-----------6-----------+

A+---3---+B +Z

+-----------3-----------+

Then two legs of BZ can be combined:

B A+---3---+---9---+Z

Then AB and BZ can be combined to yield a net capacity of 3:

A+---3---+Z

Write a program to read in a set of pipes described as two endpoints and then calculate the net flow capacity from 'A' to 'Z'. All

networks in the test data can be reduced using the rules here.

Pipe i connects two different nodes a_i and b_i (a_i in range

'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <= 1,000). Note that lower- and upper-case node names are intended to be treated as different.

The system will provide extra test case feedback for your first 50 submissions.

约翰总希望他的奶牛有足够的水喝,因此他找来了农场的水管地图,想算算牛棚得到的水的 总流量.农场里一共有N根水管.约翰发现水管网络混乱不堪,他试图对其进行简 化.他简化的方式是这样的:

两根水管串联,则可以用较小流量的那根水管代替总流量.

两根水管并联,则可以用流量为两根水管流量和的一根水管代替它们

当然,如果存在一根水管一端什么也没有连接,可以将它移除.

请写个程序算出从水井A到牛棚Z的总流量.数据保证所有输入的水管网络都可以用上述方法 简化.

输入输出格式

输入格式:

  • Line 1: A single integer: N

  • Lines 2..N + 1: Line i+1 describes pipe i with two letters and an integer, all space-separated: a_i, b_i, and F_i

输出格式:

  • Line 1: A single integer that the maximum flow from the well ('A') to the barn ('Z')

输入输出样例

输入样例#1:

5
A B 3
B C 3
C D 5
D Z 4
B Z 6
输出样例#1:

3 

思路:
  裸最大流; 来,上代码:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 500 using namespace std; struct EdgeType {
int v,next,flow;
};
struct EdgeType edge[maxn*maxn*]; int if_z,cnt=,head[maxn],deep[maxn],n; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(int u,int v,int w)
{
edge[++cnt].v=v,edge[cnt].flow=w,edge[cnt].next=head[u],head[u]=cnt;
edge[++cnt].v=u,edge[cnt].flow=,edge[cnt].next=head[v],head[v]=cnt;
} bool BFS()
{
queue<int>que;que.push('A');
memset(deep,-,sizeof(deep));
deep['A']=;
while(!que.empty())
{
int pos=que.front();que.pop();
for(int i=head[pos];i;i=edge[i].next)
{
if(deep[edge[i].v]<&&edge[i].flow>)
{
deep[edge[i].v]=deep[pos]+;
if(edge[i].v=='Z') return true;
que.push(edge[i].v);
}
}
}
return false;
} int flowing(int now,int flow)
{
if(flow==||now=='Z') return flow;
int oldflow=;
for(int i=head[now];i;i=edge[i].next)
{
if(deep[edge[i].v]!=deep[now]+||edge[i].flow==) continue;
int pos=flowing(edge[i].v,min(flow,edge[i].flow));
flow-=pos;
oldflow+=pos;
edge[i].flow-=pos;
edge[i^].flow+=pos;
if(flow==) return oldflow;
}
return oldflow;
} int dinic()
{
int pos=;
while(BFS()) pos+=flowing('A',0x7ffffff);
return pos;
} int main()
{
in(n);char u,v;int w;
while(n--)
{
cin>>u>>v;in(w);
edge_add(u,v,w);
}
printf("%d\n",dinic());
return ;
}

AC日记——[USACO09JAN]全流Total Flow 洛谷 P2936的更多相关文章

  1. AC日记——[USACO15DEC]最大流Max Flow 洛谷 P3128

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

  2. 2018.07.06 洛谷P2936 [USACO09JAN]全流Total Flow(最大流)

    P2936 [USACO09JAN]全流Total Flow 题目描述 Farmer John always wants his cows to have enough water and thus ...

  3. 洛谷——P2936 [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  4. 洛谷 P2936 [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  5. [USACO09JAN]全流Total Flow

    题目描述 Farmer John always wants his cows to have enough water and thus has made a map of the N (1 < ...

  6. 【luogu P2936 [USACO09JAN]全流Total Flow】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2936 菜 #include <queue> #include <cstdio> #i ...

  7. P2936(BZOJ3396) [USACO09JAN]全流Total Flow[最大流]

    题 裸题不多说,在网络流的练习题里,你甚至可以使用暴力. #include<bits/stdc++.h> using namespace std; typedef long long ll ...

  8. AC日记——【模板】二分图匹配 洛谷 P3386

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

  9. AC日记——[USACO10MAR]仓配置Barn Allocation 洛谷 P1937

    [USACO10MAR]仓配置Barn Allocation 思路: 贪心+线段树维护: 代码: #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. CSS基础(一)

    一.CSS概述 CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中,是为了解决内容与表 ...

  2. 896. Monotonic Array

    An array is monotonic if it is either monotone increasing or monotone decreasing. An array A is mono ...

  3. Linux中让alias设置永久生效的方法详解

    Linux中让alias设置永久生效的方法详解 一.问题描述 1.有很多时候我们想要将很多操作作为一个步骤,那么在不作为系统的服务的情况下,别名是我们最好的选择,但是发现别名只能在一次会话中生效,重启 ...

  4. LeetCode(232) Implement Queue using Stacks

    题目 Implement the following operations of a queue using stacks. push(x) – Push element x to the back ...

  5. B - CD UVA - 624

    https://cn.vjudge.net/contest/224070#problem/B #include <iostream> #include <cstring> #i ...

  6. iOS启动图 LaunchImage LaunchScreen.xib

    1.Images.xcassets添加LaunchImage 2.具体大小和添加类别都是可以调的 640*960   (4/4s)                                 2X ...

  7. zuul session 不一致的问题

    配置文件: #不加这句话导致session不一致zuul.routes.intelligentsia-authority.sensitiveHeaders = Authorization 过滤器里面 ...

  8. dubbo rpc filter实现剖析(一)

    2.6.3版本,之前读的是2.4.9版本 本篇主要阐述dubbo rpc的filter的实现,包括作用,用法,原理,与Spring Cloud在这些能力的对比. 共提供了多少个?是哪些?发布时默认装配 ...

  9. linux随笔二

    1.查看整个文件 cat mongo.sh    查看脚本文件的内容:mongo 172.60.0.203:27017/che001 -uplatform -pplatform cat -n **,查 ...

  10. 【IOI1998】Polygon 区间DP

    题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条边 ...