题面

【题目描述】:

有一天,Silence对可以旋转的正整数十分感兴趣。在旋转操作中,他可以把后面的数字按照原位置不动地搬到剩下位置的前面。当然,他也可以完全不动这串数字。比如,他可以把123变为123,231,312三种。现在他想知道他能得到多少个不同的整数,但他又觉得这个问题太简单了,所以开始思考这所有的整数中有多少个比原数大,有多少个比原数小,又有多少个和原数相等。我们将保证原来的整数是正的,它没有前导0,但如果我们通过旋转得到一个带前导0的数字,我们忽略它的前导0,比如,104旋转后能变成041,我们将它看为41。

【输入描述】:

输入的第一行包含一个整数t(1<=t<=50),这意味着测试数据的组数。

对于每组数据,只有一行包含一个整数n(n<=10^100000),我们将确保n是一个没有前导0的正整数。

【输出描述】:

对于每组数据,请输出一行包括三个整数,输出格式为"Case X: L E G"(不包含双引号),X表示当前数据的组数。L表示通过旋转操作比n小的数字的个数。E表示通过旋转过后等于n的数字的个数。G表示通过旋转操作比n大的数字的个数。

【输入样例】:

1
341

【输出样例】:

Case 1: 1 1 1

题解

首先, 注意到题目要求的整数是"不相同"的, 因此要把原数进行KMP去完整循环节.

然后跑一次扩展KMP, \(match[i]\)表示可以匹配的最大长度, 因此说明

\(match[i] +1\)位是不匹配的, 比较这一位即可.

#include <cstdio>
#include <cstring>
#include <algorithm> const int L = (int)1e5; int main()
{
#ifndef ONLINE_JUDGE
freopen("revolving.in", "r", stdin);
#endif
int t;
scanf("%d", &t);
for(int cs = 1; cs <= t; ++ cs)
{
static char str[L <<1];
scanf("%s", str);
int len = strlen(str);
static int nxt[L];
nxt[0] = -1;
int p = nxt[0];
for(int i = 1; i < len; ++ i)
{
for(; ~ p && str[p + 1] ^ str[i]; p = nxt[p]);
nxt[i] = str[p + 1] == str[i] ? ++ p : p;
}
if(len % (len - nxt[len - 1] - 1) == 0)
len -= nxt[len - 1] + 1;
for(int i = 0; i < len; ++ i)
str[i + len] = str[i];
static int mtch[L << 1];
mtch[0] = (len << 1) - 1;
p = 1;
mtch[p] = -1;
for(; p + mtch[p] + 1 < len << 1 && str[mtch[p] + 1] == str[p + mtch[p] + 1]; ++ mtch[p]);
int mx = p + mtch[p];
for(int i = 1; i < len << 1; ++ i)
{
mtch[i] = std::max(-1, std::min(mx - i, mtch[i - p]));
for(; i + mtch[i] + 1 < len << 1 && str[mtch[i] + 1] == str[i + mtch[i] + 1]; ++ mtch[i]);
if(i + mtch[i] > mx)
p = i, mx = p + mtch[p];
}
int L = 0, E = 1, G = 0;
for(int i = 1; i < len; ++ i)
if(mtch[i] + 1 >= len)
++ E;
else if(str[i + mtch[i] + 1] > str[mtch[i] + 1])
++ G;
else
++ L;
printf("Case %d: %d %d %d\n", cs, L, E, G);
}
}

Revolving Digits的更多相关文章

  1. Revolving Digits[EXKMP]

    Revolving Digits Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. 【HDU4333】Revolving Digits(扩展KMP+KMP)

    Revolving Digits   Description One day Silence is interested in revolving the digits of a positive i ...

  3. 字符串(扩展KMP):HDU 4333 Revolving Digits

    Revolving Digits Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. HDU 4333 Revolving Digits 扩张KMP

    标题来源:HDU 4333 Revolving Digits 意甲冠军:求一个数字环路移动少于不同数量 等同 于的数字 思路:扩展KMP求出S[i..j]等于S[0..j-i]的最长前缀 推断 nex ...

  5. hdu4333 Revolving Digits(扩展kmp)

    Revolving Digits Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. 扩展KMP - HDU 4333 Revolving Digits

    Revolving Digits Problem's Link Mean: 给你一个字符串,你可以将该字符串的任意长度后缀截取下来然后接到最前面,让你统计所有新串中有多少种字典序小于.等于.大于原串. ...

  7. HDU - 4333 :Revolving Digits (扩展KMP经典题,问旋转后有多少个不同的数字小于它本身,等于它本身,大于它本身。)

    One day Silence is interested in revolving the digits of a positive integer. In the revolving operat ...

  8. Hdu 4333 Revolving Digits(Exkmp)

    Revolving Digits Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  9. Revolving Digits(hdu4333)

    Revolving Digits Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. iOS 中的视图函数 init initwithnib viewDidLoad viewWillAppear的总结

    我要总结的函数主要是这几个: UIView *view-如果view还没有被初始化的话,getter方法会先调用[self loadView],如果getter或者setter方法被重写了,子类中的g ...

  2. POJ:1751-Highways(Kruskal和Prim)

    Highways Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6078 Accepted: 1650 Special Judg ...

  3. 水题:UVa213- Message Decoding

    Message Decoding Some message encoding schemes require that an encoded message be sent in two parts. ...

  4. debian安装之后使用android手机上网

    安装debian的过程中,没有连接网线.因为路由器在客厅,电脑在卧室,拖条长长的线很不方便. 断网安装完成之后,通过usb连上i9250. 在i9250上,执行以下操作: “设置”--->“更多 ...

  5. c++ dll 创建

    建立一个C++的Win32DLL,这里要注意选择"Export symbols"导出符号.点击完成. 如下图所示:   由于项目的名称是"TestCPPDLL" ...

  6. luogu2580 于是他错误的点名开始了 Trie树

    模板题 #include <iostream> #include <cstring> #include <cstdio> using namespace std; ...

  7. __block 和__weak

    1,在MRC 时代,__block 修饰,可以避免循环引用:ARC时代,__block 修饰,同样会引起循环引用问题: 2,__block不管是ARC还是MRC模式下都可以使用,可以修饰对象,还可以修 ...

  8. 《Python全栈开发指南》第3版 Alex著(LFXC2018)

    第一章 Python基础——Python介绍&循环语句 1.1 编程语言介绍 1.2 Python介绍 1.3 Python安装 1.4 第一个Python程序 1.5 变量 1.6 程序交互 ...

  9. day04_02 知识回顾、赋值运算符

    input命令输出的是字符串 数字转换成字符串 字符串转换成数字 以上成为类型的强制转换 运算符

  10. deque 类

    题外: 'A' +1='B' 1.deque被称为双端队列,它也是一种顺序容器.可通过迭代器存取元素 ,也可以通过下标顺序 存取元素 for(i=0;i<d1.size();i++) { cou ...