pandas使用浮点值NaN表示浮点和非浮点数组中的缺失数据:
In [14]: string_data = Series(['aardvark','artichoke',np.nan,'avocado'])
In [15]: string_data
Out[15]:
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
In [16]: string_data.isnull()
Out[16]:
0 False
1 False
2 True
3 False
dtype: bool
python内置的None值也会被当作NA处理:
In [17]: string_data[0] = None
In [18]: string_data.isnull()
Out[18]:
0 True
1 False
2 True
3 False
dtype: bool
1.滤除缺失数据
dropna用于返回一个仅含非空数据和索引值的Series:
In [20]: data = Series([1,NA,3.5,NA,7])
In [21]: data.dropna()
Out[21]:
0 1.0
2 3.5
4 7.0
dtype: float64
通过布尔型索引亦可以:
In [22]: data[data.notnull()]
Out[22]:
0 1.0
2 3.5
4 7.0
dtype: float64
对于DataFrame,dropna默认丢弃含有缺失值的行
In [23]: data = DataFrame([[1.,6.5,3.],[1.,NA,NA],[NA,NA,NA],[NA,6.5,3.]])
In [24]: cleaned = data.dropna()
In [25]: data
Out[25]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
In [26]: cleaned
Out[26]:
0 1 2
0 1.0 6.5 3.0
传入how="all"丢弃全为NaN的行:
In [27]: data.dropna(how="all")
Out[27]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0
丢弃含有NaN的列:
In [28]: data[4] = NA
In [29]: data
Out[29]:
0 1 2 4
0 1.0 6.5 3.0 NaN
1 1.0 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN 6.5 3.0 NaN
In [30]: data.dropna(axis=1,how="all")
Out[30]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
thresh可以选择过滤含有多少有用数据的行
In [41]: df
Out[41]:
0 1 2
0 -0.184676 NaN NaN
1 0.565214 NaN NaN
2 0.440203 NaN NaN
3 0.188283 NaN 0.146847
4 1.696903 NaN 0.554640
5 -1.287915 0.139527 -0.494558
6 0.854922 0.299511 0.773247
In [42]: df.dropna(thresh=2) # thresh=2表示至少有两个非空数据
Out[42]:
0 1 2
3 0.188283 NaN 0.146847
4 1.696903 NaN 0.554640
5 -1.287915 0.139527 -0.494558
6 0.854922 0.299511 0.773247
In [43]: df.dropna(thresh=1)
Out[43]:
0 1 2
0 -0.184676 NaN NaN
1 0.565214 NaN NaN
2 0.440203 NaN NaN
3 0.188283 NaN 0.146847
4 1.696903 NaN 0.554640
5 -1.287915 0.139527 -0.494558
6 0.854922 0.299511 0.773247
2.填充缺失数据
fillna是最主要的填充缺省数据的方法:
In [9]: df.fillna(0)
Out[9]:
0 1 2
0 0.863556 0.000000 0.000000
1 -0.099558 0.000000 0.000000
2 -0.605804 0.000000 0.000000
3 -0.934688 0.000000 -1.198976
4 0.741383 0.000000 0.229845
5 -1.415495 0.511485 -0.086808
6 -0.748325 0.437964 -2.458319
通过字典调用fillna可以实现不同列填充不同值:
In [11]: df.fillna({1:0.5,2:-1})
Out[11]:
0 1 2
0 0.863556 0.500000 -1.000000
1 -0.099558 0.500000 -1.000000
2 -0.605804 0.500000 -1.000000
3 -0.934688 0.500000 -1.198976
4 0.741383 0.500000 0.229845
5 -1.415495 0.511485 -0.086808
6 -0.748325 0.437964 -2.458319

pandas知识点(处理缺失数据)的更多相关文章

  1. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  2. pandas 4 处理缺失数据nan

    from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates ...

  3. Pandas汇总和处理缺失数据

    汇总的函数 方法 说明 count 非NA的值数量 describe 针对Series和DataFrame列计算汇总统计 min.max 计算最小值和最大值 argmin.argmax 计算能够获取到 ...

  4. Pandas之Dropna滤除缺失数据

    import pandas as pd import numpy as np from numpy import nan as NaN 一.处理Series对象 通过dropna()滤除缺失数据 fr ...

  5. pandas(五)处理缺失数据和层次化索引

    pandas用浮点值Nan表示浮点和非浮点数组中的缺失数据.它只是一个便于被检测的标记而已. >>> string_data = Series(['aardvark','artich ...

  6. 机器学习-Pandas 知识点汇总(吐血整理)

    Pandas是一款适用很广的数据处理的组件,如果将来从事机械学习或者数据分析方面的工作,咱们估计70%的时间都是在跟这个框架打交道.那大家可能就有疑问了,心想这个破玩意儿值得花70%的时间吗?咱不是还 ...

  7. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  8. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  9. 利用Python进行数据分析-Pandas(第五部分-数据规整:聚合、合并和重塑)

    在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是panda ...

随机推荐

  1. sql 时间函数用法

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  2. UiPath Studio 快捷键

    掌握快捷键可以事半功倍,写一下比较重要的 1. Ctrl + J  插入代码片段 2. Ctrl + K  快速建变量 3. Ctrl + L  打开日志文件夹 4. Ctrl + F4  关闭当前机 ...

  3. Oracle存储函数jdbc调用

    package com.jckb.procedure; import java.sql.CallableStatement; import java.sql.Connection; import ja ...

  4. asp.net 在IIS上配置出现的一些问题

    1.可能会遇到一下图的错无.请求的内容似乎是脚本.因而将无法由静态文件处理程序来处理---大概的原因是应用程序池选择错误了.如第二幅图如此解决即可 解决方案如下两个图所示. 我遇到了以上的问题之后能也 ...

  5. python之字符串切割

    Python中split()函数,通常用于将字符串切片并转换为列表. 一.函数说明: split():语法:str.split(str="",num=string.count(st ...

  6. 详细讲解:tp3.2.3生成验证码并进行验证(ajax校验返回及自定义返回)

    TP3.2.3的验证码也是比较经典的小功能,框架对这个小功能的封装还是比较完美的,废话不多说,开始记录 1.总体效果: (1)初始界面 (2)自定义的返回校验效果: (3)ajax的校验返回: 2.代 ...

  7. java Vamei快速教程18 容器

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Java中有一些对象被称为容器(container).容器中可以包含多个对象,每个 ...

  8. 百度地图API 基础入门

    一.注册账号,获取密钥 流程-注册-登录-控制台-创建应用-获取密钥: 1.你想要调取百度地图,首先,你需要注册一个百度账号,获取密匙. 2.密钥获取以后,引入到你需要调用百度地图的界面中. 二.创建 ...

  9. 日常-acm-排列

    用1-9组成三个数abc,def,ghi,每个数字恰好出现一次,要求abc:def:ghi=1:2:3.按照“abc def ghi”输出所有解,每行一个解. #include <iostrea ...

  10. Android(java)学习笔记81:在TextView组件中利用Html插入文字或图片

    1. TextView中利用Html插入文字或者图片: 首先我们看看代码: (1)activity_main.xml: <LinearLayout xmlns:android="htt ...