Rikka with Subset

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1846    Accepted Submission(s): 896

Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calculates the sum of S.

Now, Yuta has got 2n numbers between [0,m]. For each i∈[0,m], he counts the number of is he got as Bi.

Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An.

It is too difficult for Rikka. Can you help her?

 
Input
The first line contains a number t(1≤t≤70), the number of the testcases.

For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).

The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).

 
Output
For each testcase, print a single line with n numbers A1−An.

It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.

 
Sample Input
2
2 3
1 1 1 1
3 3
1 3 3 1
 
Sample Output
1 2
1 1 1

Hint

In the first sample, A is [1,2]. A has four subsets [],[1],[2],[1,2] and the sums of each subset are 0,1,2,3. So B=[1,1,1,1]

 
Source
思路:从小到大枚举加入的i值,如果当前的数字组合得到的i的数量小于b[i]那么就要加入对应个i值,同时更新f[i](数字和为i的集合个数)的值,直到填满n个数字。
代码:
 #include<bits/stdc++.h>
#define db double
#define ll long long
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e5+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
const int inf = 0x3f3f3f3f;
int b[N],f[N],a[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
int t;
ci(t);
for(int ii=;ii<=t;ii++)
{
int n,m,c=;
ci(n),ci(m);
for(int i=;i<=m;i++) ci(b[i]);
memset(f,,sizeof(f));
f[]=;
for(int i=;i<=m;i++){//我们要加入的数字i
int v=b[i]-f[i];//加入v个i
for(int j=;j<v;j++){
a[++c]=i;
for(int k=m;k>=i;k--){
f[k]+=f[k-i];//更新当前组合的种数
}
}
}
for(int i=;i<=n;i++){
printf("%d%c",a[i],i==n?'\n':' ');
}
}
}

HDU 6092 01背包变形的更多相关文章

  1. hdu 2184 01背包变形

    转自:http://blog.csdn.net/liuqiyao_01/article/details/8753686 题意:这是又是一道01背包的变体,题目要求选出一些牛,使smartness和fu ...

  2. HDU 3466 01背包变形

    给出物品数量N和总钱数M 对于N个物品.每一个物品有其花费p[i], 特殊值q[i],价值v[i] q[i] 表示当手中剩余的钱数大于q[i]时,才干够买这个物品 首先对N个物品进行 q-p的排序,表 ...

  3. HDU 1203 01背包变形题,(新思路)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1203 I NEED A OFFER! Time Limit: 2000/1000 MS (Java/ ...

  4. hdu 3466 01背包变形【背包dp】

    http://acm.hdu.edu.cn/showproblem.php?pid=3466 有两个物品P,Q,V分别为 3 5 6, 5 10 5,如果先dp第一个再dp第二个,背包容量至少要为3+ ...

  5. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. 【01背包变形】Robberies HDU 2955

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 [题意] 有一个强盗要去几个银行偷盗,他既想多抢点钱,又想尽量不被抓到.已知各个银行 的金钱数和被抓的概率 ...

  7. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  8. codeforce Gym 101102A Coins (01背包变形)

    01背包变形,注意dp过程的时候就需要取膜,否则会出错. 代码如下: #include<iostream> #include<cstdio> #include<cstri ...

  9. hdu 1203 01背包 I need a offer

    hdu 1203  01背包  I need a offer 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 题目大意:给你每个学校得到offe ...

随机推荐

  1. 合理设置apache的最大连接数

    手头有一个网站在线人数增多,访问时很慢.初步认为是服务器资源不足了,但经反复测试,一旦连接上,不断点击同一个页面上不同的链接,都能迅速打开,这种现象就是说明apache最大连接数已经满了,新的访客只能 ...

  2. AD7190的小总结

    1.单次转换模式 通过配置“模式寄存器的MD2.MD1.MD0为001”,便可启动单次转换. 流程“上电 -> 单次转换 -> 省电模式 ” , 片内振荡上电需要大约1ms.   单次转换 ...

  3. sublime完美编码主题

    Theme – Soda 使用Ctrl+Shift+P快捷键或者进入菜单:Preferences(首选项) - Package Control(插件控制),调出命令输入框,输入Install Pack ...

  4. c++ STL stack容器成员函数

    这是后进先出的栈,成员函数比较简单,因为只能操作栈顶的元素.不提供清除什么的函数. 函数 描述 bool s.empty() 栈是否为空(即size=0).若空,返回true,否则,false. vo ...

  5. 平时对ES6的一些总结

    1.Genertor中yield和Interator中的next方法 Genertor的yield是把这个函数变成分段的:Interator中的next也是一个一个执行的: function* f() ...

  6. java poi读取excel公式,返回计算值(转)

    http://blog.csdn.net/CYZERO/article/details/6573015 经测试,确实可以 1 package hrds.zpf.poi;  2  3  import o ...

  7. Codeforces Round #323 (Div. 2) D 582B Once Again...(快速幂)

    A[i][j]表示在循环节下标i开头j结尾的最长不减子序列,这个序列的长度为p,另外一个长度为q的序列对应的矩阵为B[i][j], 将两序列合并,新的序列对应矩阵C[i][j] = max(A[i][ ...

  8. Aizu 2303 Marathon Match (概率)

    因为第i个人休息j次服从二项分布,算一下组合数. 数据范围小. 求出第i个人休息j次的概率和对应的时间之后,全概率公式暴力统计. #include<bits/stdc++.h> using ...

  9. 【BZOJ1064】[NOI2008] 假面舞会(图上DFS)

    点此看题面 大致题意:有\(k\)种面具(\(k\)是一个未知数且\(k≥3\),每种面具可能有多个),已知戴第\(i\)种面具的人能看到第\(i+1\)种面具上的编号,特殊的,戴第\(k\)种面具的 ...

  10. 为项目创建podfile

    由于写项目 不常用到,容易忘记,记录一下 第一步:新建一个项目: 第二步:打开终端,输入 cd 第三步:把项目拖入终端,(获取项目路径) 第四步:回车,输入 pod init (生成podfile 文 ...