Rikka with Subset

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1846    Accepted Submission(s): 896

Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calculates the sum of S.

Now, Yuta has got 2n numbers between [0,m]. For each i∈[0,m], he counts the number of is he got as Bi.

Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An.

It is too difficult for Rikka. Can you help her?

 
Input
The first line contains a number t(1≤t≤70), the number of the testcases.

For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).

The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).

 
Output
For each testcase, print a single line with n numbers A1−An.

It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.

 
Sample Input
2
2 3
1 1 1 1
3 3
1 3 3 1
 
Sample Output
1 2
1 1 1

Hint

In the first sample, A is [1,2]. A has four subsets [],[1],[2],[1,2] and the sums of each subset are 0,1,2,3. So B=[1,1,1,1]

 
Source
思路:从小到大枚举加入的i值,如果当前的数字组合得到的i的数量小于b[i]那么就要加入对应个i值,同时更新f[i](数字和为i的集合个数)的值,直到填满n个数字。
代码:
 #include<bits/stdc++.h>
#define db double
#define ll long long
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e5+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
const int inf = 0x3f3f3f3f;
int b[N],f[N],a[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
int t;
ci(t);
for(int ii=;ii<=t;ii++)
{
int n,m,c=;
ci(n),ci(m);
for(int i=;i<=m;i++) ci(b[i]);
memset(f,,sizeof(f));
f[]=;
for(int i=;i<=m;i++){//我们要加入的数字i
int v=b[i]-f[i];//加入v个i
for(int j=;j<v;j++){
a[++c]=i;
for(int k=m;k>=i;k--){
f[k]+=f[k-i];//更新当前组合的种数
}
}
}
for(int i=;i<=n;i++){
printf("%d%c",a[i],i==n?'\n':' ');
}
}
}

HDU 6092 01背包变形的更多相关文章

  1. hdu 2184 01背包变形

    转自:http://blog.csdn.net/liuqiyao_01/article/details/8753686 题意:这是又是一道01背包的变体,题目要求选出一些牛,使smartness和fu ...

  2. HDU 3466 01背包变形

    给出物品数量N和总钱数M 对于N个物品.每一个物品有其花费p[i], 特殊值q[i],价值v[i] q[i] 表示当手中剩余的钱数大于q[i]时,才干够买这个物品 首先对N个物品进行 q-p的排序,表 ...

  3. HDU 1203 01背包变形题,(新思路)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1203 I NEED A OFFER! Time Limit: 2000/1000 MS (Java/ ...

  4. hdu 3466 01背包变形【背包dp】

    http://acm.hdu.edu.cn/showproblem.php?pid=3466 有两个物品P,Q,V分别为 3 5 6, 5 10 5,如果先dp第一个再dp第二个,背包容量至少要为3+ ...

  5. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. 【01背包变形】Robberies HDU 2955

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 [题意] 有一个强盗要去几个银行偷盗,他既想多抢点钱,又想尽量不被抓到.已知各个银行 的金钱数和被抓的概率 ...

  7. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  8. codeforce Gym 101102A Coins (01背包变形)

    01背包变形,注意dp过程的时候就需要取膜,否则会出错. 代码如下: #include<iostream> #include<cstdio> #include<cstri ...

  9. hdu 1203 01背包 I need a offer

    hdu 1203  01背包  I need a offer 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 题目大意:给你每个学校得到offe ...

随机推荐

  1. 利用PyQt GUI显示图片、实时播放视频

    ---作者吴疆,未经允许,严禁转载,违权必究--- ---欢迎指正,需要源码和文件可站内私信联系--- -----------点击此处链接至博客园原文----------- 功能说明:PyQt界面程序 ...

  2. Java继承改进

    一.java继承改进 首先,多继承的缺点: 1.继承多个父类,父类中方法名相同,产生歧义 2.父类中方法同名,子类未覆盖,也会歧义 所以,java改进,类只能单继承,接口可以多继承 接口中只有抽象方法 ...

  3. 安装mysql-installer-community

    1.在官网上下载mysql-installer-community-5.6.25.0 2.选择MySQL Installer 3.选择Windows (x86, 32-bit), MSI Instal ...

  4. Error: unknown argument: '-websockets'

    参考原文:http://www.cocoachina.com/bbs/read.php?tid=194014 解决方法:点击项目右边编辑区域上面有一个building setting找到other l ...

  5. DBA的做法

    防止有人删除数据库,创建一个触发器当数据库被删除是发送一份邮件给管理员并撤销这个命令. Create trigger [tridbsafe]ON ALL SERVERFOR DROP_DATABASE ...

  6. 将表格table作为execl导出

    有时候的需求是从后台获取数据,然后将数据变成execl,进行导出,下载成execl 解决的方法是 一,比较方便的是 这有个插件 可以直接用 https://www.npmjs.com/package/ ...

  7. System.FormatException: GUID 应包含带 4 个短划线的 32 位数(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)。解决办法

    查一下数据库的UID数据是否格式正确,如: 错误格式1: {E056BB36-D824-4106-A9C3-D8D8B9ADC1C 错误格式2: E056BB36-D824-4106-A9C3-D8D ...

  8. Aizu 2301 Sleeping Time(概率,剪枝)

    根据概率公式dfs即可,判断和区间[T-E,T+E]是否有交,控制层数. #include<bits/stdc++.h> using namespace std; int K,R,L; d ...

  9. 【BZOJ3930】[CQOI2015] 选数(容斥)

    点此看题面 大致题意: 让你求出在区间\([L,H]\)间选择\(n\)个数时,有多少种方案使其\(gcd\)为\(K\). 容斥 原以为是一道可怕的莫比乌斯反演题. 但是,数据范围中有这样一句话:\ ...

  10. python3安装pip

    wget --no-check-certificate https://pypi.python.org/packages/source/p/pip/pip-8.0.2.tar.gz#md5=3a73c ...