luogu2568 GCD
先筛法求出 \([1,n]\) 间的素数,然后枚举每个素数。可以发现,对于每个素数 \(x\),它的贡献是 \([1,\lfloor n/x \rfloor]\) 间的有序互质对数。
我们钦定 \((x,y)\) 是 \(x \leq y\) 的,发现 \(x=y\) 是合法的当且仅当 \(x=y=1\)。这样就有 \(x < y\) 了。要求 \(x,y\) 互素,则想到求 \(\varphi(y)\)。
则对于一个素数 \(x\),他对答案的贡献是 \(\sum_{i=1}^{\lfloor n/x \rfloor} 2\varphi(i)-1\)。减一是因为 \((1,1)\) 被计算了两遍。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, cnt, pri[10000005];
ll ans, phi[10000005];
bool isp[10000005];
void shai(){
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
phi[1] = 1;
for(int i=2; i<=n; i++){
if(isp[i]){
pri[++cnt] = i;
phi[i] = i - 1;
}
for(int j=1; j<=cnt && i*pri[j]<=n; j++){
isp[i*pri[j]] = false;
if(i%pri[j]==0){
phi[i*pri[j]] = phi[i] * pri[j];
break;
}
phi[i*pri[j]] = phi[i] * (pri[j] - 1);
}
}
for(int i=2; i<=n; i++)
phi[i] += phi[i-1];
}
int main(){
cin>>n;
shai();
for(int i=1; i<=cnt; i++)
ans += 2 * phi[n/pri[i]] - 1;
cout<<ans<<endl;
return 0;
}
luogu2568 GCD的更多相关文章
- Objective-C三种定时器CADisplayLink / NSTimer / GCD的使用
OC中的三种定时器:CADisplayLink.NSTimer.GCD 我们先来看看CADiskplayLink, 点进头文件里面看看, 用注释来说明下 @interface CADisplayLin ...
- iOS 多线程之GCD的使用
在iOS开发中,遇到耗时操作,我们经常用到多线程技术.Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法,只需定义想要执行的任务,然后添加到适当的调度队列 ...
- 【swift】BlockOperation和GCD实用代码块
//BlockOperation // // ViewController.swift import UIKit class ViewController: UIViewController { @I ...
- 修改版: 小伙,多线程(GCD)看我就够了,骗你没好处!
多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系 ...
- GCD的相关函数使用
GCD 是iOS多线程实现方案之一,非常常用 英文翻译过来就是伟大的中枢调度器,也有人戏称为是牛逼的中枢调度器 是苹果公司为多核的并行运算提出的解决方案 1.一次性函数 dispatch_once 顾 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
随机推荐
- Unity AssetBundle笔记
1.入门: Resources:表示U3D自动将资源打成一个AssetBundle包,所有放在Resources下的文件夹都会打成一个AssetBundle包,资源非常大,Resources文件夹在真 ...
- IIS+PHP访问量大时内存爆满等性能问题解决方案
如今还是有许多人在用老掉牙的 IIS6 + PHP.本文解决方法适用于使用 FastCGI 运行 PHP 的用户. 问题原因: 你可以试一试,你在 VPS 上用 IIS6 安装 FastCGI 跑 P ...
- 基于.net core封装的xml序列化,反序列化操作
需求: 由于在.net core中去除了Xml序列化XmlSerializer操作类.因此,在于一此数据传输当中出,需要用到对xml格式字符串的处理问题.因此封装了一个xml序列化与反序列化操作的类库 ...
- Java .class文件的反编译与反汇编
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10840818.html 一:反编译 通常用于第三方JAR包的逆向工程. 一般我们拿到的jar包都是经过编译后 ...
- 【笨办法学Python】习题11:打印出改变了的输入
print "How old are you?", age = raw_input() print "How tall are you?", height = ...
- (十一)maven之安装nexus私服
安装nexus私服 前面的文章中对项目引入jar依赖包的时候,maven一般先是在本地仓库找对应版本的jar依赖包,如果在本地仓库中找不到,就上中央仓库中下载到本地仓库. 然而maven默认提供的中央 ...
- 使用python模拟cookie登陆wooyun
import urllib2 class SimpleCookieHandler(urllib2.BaseHandler): def http_request(self, req): simple_c ...
- 用”人话”解释CNN —— 对单个特征图进行视觉化
转载自:http://nooverfit.com/wp/pycon-2016-tensorflow-研讨会总结-tensorflow-手把手入门-用人话解释cnn 首先什么是CNN? 其实, 用”人话 ...
- MINST手写数字识别(二)—— 卷积神经网络(CNN)
今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期.大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步. 所以,今天就来带大家写 ...
- 理想路径——双向BFS
题目 给n个点m条边(2 ≤ n ≤ 100000,1 ≤ m ≤ 200000)的无向图,每条边上都涂有一种颜色.求从结点1到结点n的一条路径,使得经过的边数尽量的少,在此前提下,经过边的颜色序列的 ...