bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT
题目大意:
给出n个数\(q_i\)定义
\]
设\(E_i = \frac{f_i}{q_i}\),求所有的\(E_i\)
题解:
我们把\(f_i\)代入\(E_i\)的表达式中,有
\]
然后我们考虑每个\(q_i\)对\(E_i\)的贡献
我们把贡献做成如下表格,每个格子上的值和列坐标的积是对行坐标的贡献

博客园吞我表格,,只能传图了
我们发现正负分布有规律,所以我们把正贡献的负贡献分开计算
我们发现它的每一部分是满足卷积的形式的
即\((q_1,q_2,q_3,...)*(0,\frac{1}{1^2},\frac{1}{2^2},\frac{1}{3^2},...)\)
证明。。。
考虑\(f_3\),卷积后的第三位上,为\(\frac{q_1}{2^2}+\frac{q_2}{1^2}\)恰好是答案
所以FFT上啊
对于负贡献的话把\(q\)数组反过来即可
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 400010;
const double pi = acos(-1);
struct complex{
double x,y;
complex(){}
complex(double a,double b){x=a;y=b;}
complex operator + (const complex &r){return complex(x+r.x,y+r.y);}
complex operator - (const complex &r){return complex(x-r.x,y-r.y);}
complex operator * (const complex &r){return complex(x*r.x-y*r.y,x*r.y+y*r.x);}
complex operator / (const double &r){return complex(x/r,y/r);}
};
void FFT(complex *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j) < j;j >>= 1);
}
for(int m=2;m<=n;m<<=1){
complex wn(cos(p*2*pi/m),sin(p*2*pi/m));
for(int i=0;i<n;i+=m){
complex w(1,0),u;
int k = m>>1;
for(int j=0;j<k;++j,w=w*wn){
u = x[i+j+k]*w;
x[i+j+k] = x[i+j] - u;
x[i+j] = x[i+j] + u;
}
}
}
if(p == -1) for(int i=0;i<n;++i) x[i] = x[i]/n;
}
double q[maxn];
complex a[maxn],b[maxn],c1[maxn],c2[maxn];
int main(){
int n;read(n);
for(int i=0;i<n;++i) scanf("%lf",&q[i]);
int len ;
for(int i=1;(i>>2) < n;i<<=1) len = i;
// printf("%d\n", len);
for(int i=0;i<n;++i){
a[i] = complex(q[i],0);
if(i != 0) b[i] = complex(1.0/i/i,0);
}
FFT(a,len,1);FFT(b,len,1);
for(int i=0;i<len;++i) c1[i] = a[i]*b[i];
memset(a,0,sizeof a);
for(int i=0;i<n;++i) a[i] = complex(q[n-i-1],0);
FFT(a,len,1);
for(int i=0;i<len;++i) c2[i] = a[i]*b[i];
//for(int i=0;i<n;++i) printf("%lf %lf || %lf %lf\n",c1[i].x,c1[i].y,c2[i].x,c2[i].y);
FFT(c1,len,-1);FFT(c2,len,-1);
for(int i=0;i<n;++i) printf("%.3lf\n",c1[i].x - c2[n-i-1].x);
getchar();getchar();
return 0;
}
bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT的更多相关文章
- bzoj 3527: [Zjoi2014]力 快速傅里叶变换
题意: 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. fft的那一堆东西还是背不到啊...这次写虽说完全自己写的,但是还是在参见了以前fft程序的情况下调了很久,主要在如下几点 ...
- BZOJ 3527: [ZJOI2014]力(FFT)
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- 数学(FFT):BZOJ 3527 [Zjoi2014]力
题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- bzoj 3527: [Zjoi2014]力【FFT】
大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...
- BZOJ 3527: [Zjoi2014]力
Description 求 \(E_i=\sum _{j=0}^{i-1} \frac {q_j} {(i-j)^2}-\sum _{j=i+1}^{n-1} \frac{q_j} {(i-j)^2} ...
随机推荐
- List集合的遍历方法
估计你永远都不会忘记这三个方法了...... public static void main(String[] args) { //超级for循环遍历方法 List<String> lis ...
- Scrapy安装向导
原文地址 https://doc.scrapy.org/en/latest/intro/install.html 安装Scrapy Scrapy运行在python2.7和python3.3或以上版本( ...
- 基于mysql本身的主从复制
mysql的主从复制在我理解而言就是一个主数据库进行增删改操作的时候会自动将数据写入与之关联的从数据库中.这个从数据库可以是一个也可以是多个.(刚开始理解的时候觉得是同一个数据库服务下的不同的data ...
- JavaScript中setInterval用法
setInterval动作的作用是在播放动画的时,每隔一定时间就调用函数,方法或对象.可以使用本动作更新来自数据库的变量或更新时间显示. setInterval动作的语法格式如下:setInterva ...
- Oracle学习第二篇—单行函数
1字符函数 length 字符长度 lengthb 字节长度 lower 变为小写 upper 变为大写 initcap 首字母大写 select Lower('xun Ying') 小写,Uppe ...
- 基于EasyNVR+EasyDSS H5视频直播二次开发实现业务需求:直接使用播放页面
之前的"网页直播.微信直播技术解决方案:EasyNVR与EasyDSS流媒体服务器组合之区分不同场景下的easynvr"有介绍一些功能.由于客户需求,我们定制一下功能.给该套方案添 ...
- Grunt 学习笔记【2】---- 配置和创建任务
本文主要讲Grunt任务配置. 说明:本文所有示例都基于Grunt 0.4.5版本. 一 说明 使用Grunt实现项目的打包等工程化工作,实际上是通过Grunt提供的机制和插件,配置一个个任务(例如: ...
- UVA 11077 - Find the Permutations(递推)
UVA 11077 - Find the Permutations option=com_onlinejudge&Itemid=8&page=show_problem&cate ...
- Java for LeetCode 110 Balanced Binary Tree
Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...
- BFC和haslayout(IE6-7)(待总结。。。)
支持BFC的浏览器(IE8+,firefox,chrome,safari) Block Formatting Context(块格式化上下文)是W3C CSS2.1规范中的一个慨念,在CSS3中被修改 ...